
531

Peritext: A CRDT for Collaborative Rich Text Editing

GEOFFREY LITT, MIT CSAIL, USA
SARAH LIM, UC Berkeley, USA
MARTIN KLEPPMANN, University of Cambridge, United Kingdom
PETER VAN HARDENBERG, Ink & Switch, USA

Conflict-Free Replicated Data Types (CRDTs) support decentralized collaborative editing of shared data,
enabling peer-to-peer sharing and flexible branching and merging workflows. While there is extensive work
on CRDTs for plain text, much less is known about CRDTs for rich text with formatting. No algorithms have
been published, and existing open-source implementations do not always preserve user intent.

In this paper, we describe a model of intent preservation in rich text editing, developed through a series
of concurrent editing scenarios. We then describe Peritext, a CRDT algorithm for rich text that satisfies the
criteria of our model. The key idea is to store formatting spans alongside the plaintext character sequence,
linked to a stable identifier for the first and last character of each span, and then to derive the final formatted
text from these spans in a deterministic way that ensures concurrent operations commute.

We have prototyped our algorithm in TypeScript, validated it using randomized property-based testing,
and integrated it with an editor UI. We also prove that our algorithm ensures convergence, and demonstrate
its causality preservation and intention preservation properties.

CCS Concepts: • Human-centered computing→ Asynchronous editors; • Information systems→
Version management.

Additional Key Words and Phrases: collaborative editing, asynchronous collaboration, rich text, Conflict-free
Replicated Data Types

ACM Reference Format:
Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg. 2022. Peritext: A CRDT for Collabo-
rative Rich Text Editing. Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 531 (November 2022), 35 pages.
https://doi.org/10.1145/3555644

1 INTRODUCTION
Realtime collaborative rich text editors like Google Docs have become a critical tool in modern
knowledge work. An important part of implementing these editors is the collaboration algorithm
that determines how to merge edits from users concurrently editing a shared document.

Most commercial collaborative editors are based on the Operational Transform (OT) family of
algorithms [12, 45]. While this approach has proven successful in practice, it has a drawback: all
known OT algorithms for rich text require a central server to mediate edits. This limits scalability,
precludes peer-to-peer decentralized sharing, and limits the flexibility of branching and merging
workflows on a document.

Authors’ addresses: Geoffrey Litt, MIT CSAIL, Cambridge, MA, USA, glitt@mit.edu; Sarah Lim, UC Berkeley, Berkeley, CA,
USA, slimberly@berkeley.edu; Martin Kleppmann, University of Cambridge, Cambridge, United Kingdom, (mk428@cst.
cam.ac.uk; Peter van Hardenberg, Ink & Switch, San Francisco, CA, USA, pvh@inkandswitch.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2573-0142/2022/11-ART531
https://doi.org/10.1145/3555644

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

https://doi.org/10.1145/3555644
https://doi.org/10.1145/3555644

531:2 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Meanwhile, Conflict-free Replicated Data Types (CRDTs) [43, 44] are another class of algorithms
that allow decentralized editing by modeling documents as data structures in which concurrent
operations are commutative. There are many CRDT algorithms for plain text (see Section 2.3),
but not much work has been done on CRDTs for rich text. We are not aware of any published
algorithms; some open-source implementations have extended plaintext CRDTs to cover rich text,
but these extensions cause editing anomalies that fail to preserve user intent.

In this paper, we present a novel CRDT called Peritext which supports collaborative editing of
rich text in a decentralized setting. Specifically, we make the following four contributions:

• We demonstrate how naively extending existing plaintext or tree CRDTs does not accurately
preserve user intent in the context of rich text editing. In Section 2 we highlight specific
editing anomalies in several open source rich text editors.
• We propose a general model of intent preservation in collaborative rich text editing, using

a series of example scenarios where two users concurrently edit the same formatted text.
This provides a test suite that can be used to evaluate the intent preservation behavior of any
algorithm for collaborative rich text editing (Section 3).
• We describe a novel CRDT for rich text called Peritext that satisfies all the criteria of our

model for intent preservation. The key idea is to store an append-only set of formatting spans
alongside the plaintext character sequence, where each span starts and ends on either side of
some character in the sequence, addressed via a stable identifier. The final formatting visible
in the editor is a deterministic function of the formatting spans that is independent of the
order in which formatting operations arrived at a node, guaranteeing convergence across
nodes. We describe a prototype implementation of our algorithm [31], written in TypeScript
and integrated with an editor UI based on the ProseMirror library (Section 4).
• We show that Peritext complies with a widely-used consistency model for collaborative

editing [45]: we prove in Appendix A that it converges, and we explain how it preserves
causality and user intentions. We evaluate our prototype implementation using randomized
property-based testing, generating concurrent editing sessions and checking that Peritext
merges them correctly.

Peritext supports both real-time and asynchronous collaboration, allowing users to choose their
preferred mode depending on the context. Moreover, Peritext provides a basis for local-first [27]
rich text editing software, which allows users to continue working while their device is offline, and
gives users greater privacy, ownership, and agency over the files they create.

Peritext is not a complete system for asynchronous collaboration: for example, it does not yet
visualize differences between document versions. Moreover, in this paper we focus only on inline
formatting such as bold, italic, font, text color, links, and comments, which can occur within a
single paragraph of text. In a future paper we will extend our algorithm to support block elements
such as headings, bullet points, block quotes, and tables.

2 RELATEDWORK
Collaboration on text documents has long been of interest to the CSCW community, although many
early systems did not provide fine-grained merging of concurrent edits [24, 28, 40]. Algorithms for
synchronous (real-time) collaborative editing allow different users to concurrently update the same
document, without locking or any other restrictions, and automatically merge those documents
into a state that preserves all users’ updates. Such algorithms fall into two main families: the
Operational Transformation (OT) approach [12, 45], and the Conflict-free Replicated Data Type
(CRDT) approach [43, 44]. Implementing real-time collaborative editing of rich text is notoriously
hard; the CKEditor team reports that it took them approximately 42 person-years [7].

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:3

2.1 Representing rich text as a tree
Rich text is often represented as a tree structure such as HTML, XML, or JSON. Both OT [10, 20, 21,
23] and CRDT algorithms [26, 33] have been proposed for handling concurrent updates to such a
tree data structure. However, generic tree algorithms are not suitable for rich text collaboration
because concurrent edits to the tree can result in anomalies.

For example, consider two users, Alice and Bob, who are editing a document that initially reads:

The fox jumped.
paragraph

“The fox jumped.”

Alice applies bold formatting to the word “jumped” to obtain “The fox jumped.” Concurrently,
Bob applies italic formatting to the same word.

Alice:

The fox jumped.
bold

Bob:

The fox jumped.
italic

paragraph

“The fox␣” bold

“jumped.”

paragraph

“The fox␣” italic

“jumped.”

In a generic tree structure, the formatting changes are expressed by deleting the word “jumped”
from the text node, and adding a new bold/italic node containing the word “jumped.” When such
concurrent operations are merged, the aforementioned tree algorithms produce duplicated text:

The fox jumped.jumped.
bold italic

paragraph

“The fox␣” bold

“jumped.”

italic

“jumped.”

We have observed this undesirable text duplication behavior in the integration of Convergence.io
with the Froala text editor [9], which is based on an OT tree data structure [8, 32]. The problem
is that the manipulations of the tree structure did not accurately capture the intent of the user: a
formatting change was expressed in terms of deletion and insertion, giving the false impression
that the user wanted to change the document text. We show in Section 4.4 how we can obtain a
tree structure of this form while preserving user intentions.

2.2 Operational Transformation (OT) for rich text
Several widely-used commercial rich text editors use Operational Transformation for collaborative
editing; in particular, Google Docs [11] is based on Jupiter [35]; Microsoft Word 365 and Dropbox
Paper are also believed to use OT, although little is known publicly about their algorithms. Among
open source rich text editors, CKEditor [7], ProseMirror [17], and Quill [6] all use OT.

Despite this widespread use, there are very few academic publications exploring OT algorithms for
rich text. Ignat, André, and Oster [19] define a sophisticated OT algorithm for rich text, supporting
text with style attributes, as well as a tree structure of nested elements with operations to split, merge,
and move elements. It avoids the text duplication problem of Section 2.1 by defining operations
that are specialized to the task of rich text editing. This algorithm defines eight operation types,
and therefore requires 64 transformation functions for each pair of operations [37].

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:4 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Fig. 1. In rich text OT algorithms, every update to a document is immediately merged into a linear timeline
maintained by a server. CRDT algorithms can support a Git-like model where multiple versions (branches) of
a document exist side-by-side, and users can choose to merge arbitrary versions.

CoWord (later named CodoxWord) pioneered OT on rich text [46, 48, 51]. It uses three types of
operations: insert, delete, and update, where an update operation modifies an attribute of a span of
characters. The published transformation functions for CoWord [48] are incorrect: when an update
operation is concurrent with an insertion or deletion that falls within the span of the update, they
do not transform the length of the update operation or the attributes of the insert operation. This
algorithm is therefore not able to guarantee convergence.

While OT for rich text has been widely adopted, it also suffers from several downsides:
• It requires that all communication between collaborators flows via a central server, making it

difficult to support peer-to-peer and decentralized architectures. Although peer-to-peer OT
is possible in principle [38, 45, 47], all rich text OT algorithms we know of do in fact require
a central server since they use a Jupiter-like [35] model.
• It is difficult to support offline editing and disconnected operation: when two users have been

working offline and come back online, each of one user’s operations have to be transformed
with respect to all of the other user’s operations, which is slow [30].
• OT algorithms are designed on the assumption of synchronous collaboration, where every

user’s edits are applied to the shared document as soon as possible. However, in some
situations it is preferable to support branching and merging workflows, for example by
allowing each user to work on their own version of a document for a while, and to let the
users decide when (and whether) to merge versions later. For example, in Figure 1, user A
merges an edit by user B while concurrently user B merges an edit by user A, and then

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:5

subsequently both users want to merge edits by user C: many OT algorithms do not support
this usage pattern.

2.3 Conflict-free Replicated Data Types (CRDTs) for rich text
CRDTs are a family of algorithms that allow any number of replicas of a data structure to be
maintained in a distributed system, such that each replica can be updated independently, and the
states of replicas can be merged in arbitrary ways [41, 43, 44]. CRDTs avoid the problems of OT
by making concurrent operations commutative, so that a replica can apply them in any order and
converge to the same state as a replica that applied the same operations in a different order.

Many CRDTs for plain text have been proposed, including Treedoc [42], WOOT [39], RGA [43],
Causal Trees [14], Logoot [50], LSEQ [34], and YATA [36]. Peritext builds upon RGA, which is
similar to Causal Trees, although our algorithm could use any of these plain text CRDTs with minor
adaptations. All of these algorithms work by assigning a unique identifier to each character.

To our knowledge, there is no prior published research on CRDTs for rich text, although there
are some open source implementations: Ritzy [16], Yjs-richtext [22], and Papyrus [15].

2.3.1 Ritzy. Ritzy uses the Causal Trees CRDT [14] as the underlying data model for the sequence
of characters. Each character is extended with an attributes property containing the formatting
(e.g. bold, italic) of that character. When a user selects a span of text and changes its formatting, the
CRDT internally updates the attributes of each individual character in the selected span. Concurrent
attribute updates to the same character are resolved using a last write wins rule (the update with
the higher timestamp takes priority).

Storing the formatting separately on each character has an important consequence for collabora-
tive editing behavior. Starting with the sentence “The fox jumped” as before, imagine that Alice
bolds the text, while Bob concurrently inserts some new text:

Alice:

The fox jumped.
bold

Bob:

The brown fox jumped.
inserted

In Ritzy, when the two users merge their states, the final outcome is:

The brown fox jumped.
bold bold

That is, the word “brown” retains the formatting it had at the time Bob inserted it. Whether this
is desirable or not is perhaps a matter of taste; as explained in Section 3.1, Peritext handles this
situation differently.

A bigger problem arises if the attribute that Alice attaches to the sentence is not bold formatting,
but rather a comment. In most rich text editing software, a comment is attached to a single
contiguous span of text, and it would be surprising for the comment to become split into two
parts due to concurrent insertion of text in the middle of the comment span. It would be possible
to render the comment as a single span nevertheless, but doing this requires care in Ritzy’s per-
character-attributes model. The overhead of storing attributes individually on each character is
also a concern with this model.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:6 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

2.3.2 Yjs-richtext. Yjs implements rich text collaboration [22] on top of YATA [36], a plain text
CRDT. It adds formatting by embedding hidden control characters in the sequence of characters to
denote the beginning and end of formatting spans, for example “start bold” or “end bold.”

This approach avoids the problem from Section 2.3.1, since any characters inserted between
start-bold and end-bold control characters become bold. However, this approach has different
problems. Consider the following scenario, in which Alice bolds the first two words, and Bob
concurrently bolds the last two words:

Alice:

The fox jumped.
bold

The fox jumped.

Bob:

The fox jumped.
bold

The fox jumped.

We represent the control characters as and , and use different colors to distinguish the
characters inserted by Alice from those inserted by Bob. After merging we get:

The fox jumped.

Alice AliceBob Bob

Yjs renders this document by iterating left to right through the text, remembering at every
given point whether the current status is bold or non-bold. When it encounters a character, it
makes the following text bold, and when it encounters a character, it makes the following
text non-bold. With this strategy, the rendered result is:

The fox jumped.
bold

In our opinion, it would be better to make the entire sentence bold, because Alice and Bob have
collectively bolded every character. It would be possible to improve the algorithm’s behavior in this
particular example (e.g. by counting the number of “start” and “end” markers), but further edge
cases exist, as shown in Section 2.3.3.

Another example further illustrates the problems with the Yjs approach. Say Alice and Bob both
start with the document:

The fox jumped over the dog.
bold

The fox jumped over the dog.

If Alice wants to unbold the text, Yjs implements this by removing the control characters. On the
other hand, if Bob wants to unbold only the word “fox,” Yjs adds two additional control characters:

Alice:

The fox jumped over the dog.

The fox jumped over the dog.

Bob:

The fox jumped over the dog.
bold bold

The fox jumped over the dog.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:7

When Yjs merges Alice and Bob’s edits, both Alice’s deletions and Bob’s insertions of control
characters take effect, so the result is:

The fox jumped over the dog.
bold

The fox jumped over the dog.

Note that the bold formatting now extends even to the words “over the dog,” even though
those words were never bold in any document version that a user created. If there are no more
bold/non-bold control characters later in the text, this anomaly would result in the entire rest of
the document becoming bold, which is not justified by the operations performed by the users.

2.3.3 Counting control characters. We attempted to modify the Yjs algorithm to fix the aforemen-
tioned problems. For example, instead of toggling between bold and non-bold, we could maintain
a count of the number of start-bold and end-bold control characters we have seen, and format
text bold if it is preceded by more starts than ends. This approach would fix the two examples in
Section 2.3.2, but it exhibits problematic behavior in other edge cases.

For example, assume Alice and Bob both start with the following document:

The fox jumped over the dog.
bold

The fox jumped over the dog.

Alice unbolds “jumped,” while concurrently Bob unbolds “fox jumped” and bolds “dog”:

Alice:

The fox jumped over the dog.
bold

The fox jumped over the dog.

Bob:

The fox jumped over the dog.
bold bold

The fox jumped over the dog.

As these edits are merged, the bolding of “dog” is lost, because the text “dog” is preceded by the
same number of start-bold and end-bold markers:

The fox jumped over the dog.
bold

The fox jumped over the dog.

If we changed the algorithm to duplicate the initial start-bold marker, making it The
fox jumped over the dog. then the word “dog” would be bold, but now the
unbolding of the word “fox” would be lost. No matter how many layers of fixes we try to apply to
this algorithm, we have not found a variant that is able to accurately preserve the users’ intentions.

The general problem with control characters it that they make it difficult to represent changes
of formatting over time. When partially overlapping spans of text are toggled between bold and
non-bold several times, control characters tell us where a span begins or ends, but they do not tell
us which formatting is older and which is newer. When several users concurrently modify control
characters, it is difficult to determine whether the merged result is intention-preserving.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:8 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

2.3.4 Papyrus. After we finished the implementation of Peritext and released it as open source, we
learned of the existence of Papyrus, a rich text CRDT that takes a similar approach to Peritext. We
had not found it previously since it had no documentation and was not described in any publication.
The author of Papyrus subsequently wrote a brief article comparing Papyrus to Peritext [15].

In summary, Papyrus is similar to Peritext in that it stores formatting annotations outside of the
document text by referencing the unique identifier of the first and last character of the formatted
span. However, unlike Peritext, it does not support different policies for text insertion at span
boundaries, which we explain in Section 3.3.

3 CRITERIA FOR INTENT PRESERVATION
In order to reason about the correctness of an algorithm for merging rich text edits, we need a
specification for the desired behavior. In the prior sections, we have demonstrated some undesirable
behaviors that occur in existing algorithms; in this section we generalize this analysis and develop
a model of intent-preserving merge behavior for text with inline formatting.

Such a model is necessarily subjective; although our model is informed by studying the behavior
of popular text editors, we do not claim that it is the only possible specification for correct behavior.
Still, we think specifying a model is a useful contribution because it allows us (and other researchers)
to evaluate behavioral specifications separately from solution implementations.

Furthermore, as with plain text CRDTs, this model only preserves low-level syntactic intent,
and manual intervention will often be necessary to preserve semantic intent based on a human
understanding of the text. However, maximally preserving low-level intent is still helpful for sup-
porting easy manual fixes and minimizing work for the user. Intent preservation is also particularly
important in asynchronous editing scenarios, where writers cannot react in realtime to edits being
made by others.

3.1 Concurrent formatting and insertion

Example 1. In the example shown in Section 2.3.1 (Alice makes the entire text bold while Bob
inserts the word “brown” in the middle), we believe the following outcome is the most desirable:

The brown fox jumped.
bold

This example suggests a general rule: when formatting is added to the document, it applies to any
text inside a range between two characters, even if that text was not present when the formatting
was applied.

3.2 Overlapping formatting
What should happen when both users apply formatting at the same time to overlapping regions?

Example 2. Let’s say Alice bolds the first two words while Bob bolds the last two words:

Alice:

The fox jumped.
bold

Bob:

The fox jumped.
bold

When we merge these two edits, we observe that the word “fox” was set to bold by both users.
In this case there is only one reasonable outcome — the whole text should be bold:

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:9

The fox jumped.
bold

Example 3. What should happen if Alice bolds some text while Bob makes an overlapping span
italic?

Alice:

The fox jumped.
bold

Bob:

The fox jumped.
italic

It seems clear that “The” should be bolded, and “jumped” should be italicized. But what formatting
should apply to “fox,” where both users changed the formatting? Because bold and italic can coexist
on the same word, we think it is logical to make “fox” both bold and italic:

The fox jumped.
bold b+i italic

3.2.1 Conflicting overlaps. So far, we have seen merge results that seem to preserve both users’
intent. However, not all operations merge so cleanly.

Example 4. Consider assigning colored highlighting to some text. Alice applies red coloring to
“The fox,” and Bob applies blue coloring to “fox jumped”:

Alice:

The fox jumped.
red

Bob:

The fox jumped.
blue

What should happen when we merge these two edits? Unlike the previous examples, there is no
way to preserve the intent of both users — the word “fox” must be either red or blue, but it cannot
be both. As a result, this is a conflict that may require some manual intervention to resolve.

One strategy might be to entirely eliminate one user’s edit because the two cannot coexist, but
to us this seems unreasonably restrictive. Another option might be to blend the two colors together
on the word “fox,” but then we would be creating a new color that was used by neither Alice nor
Bob. In our opinion, the most reasonable behavior is: in just the region where the two formatting
ranges overlap, we arbitrarily choose either Alice’s color or Bob’s color.

The fox jumped.
red blue

or: The fox jumped.
red blue

It is important that the same color is chosen for everyone who views the document, so the choice
needs to be deterministic. And if somebody subsequently changes the color again, then the latest
color-change operation determines the final color. This conflict resolution policy is known as last
write wins or Thomas write rule [49].

An alternative to making an arbitrary automated choice would be to expose the conflicting
operations in the user interface — for example, the editor could show an annotation noting that a

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:10 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

conflict had occurred, asking a user to review the merged result. However, requiring the user to
manually resolve every conflict could become tedious; we prefer to merge documents automatically
and then allow the user to subsequently correct any aspects that were not merged to their liking.

Example 5. Conflicts occur not only with colors; even simple bold formatting operations can
produce conflicts. For example, Alice first makes the entire text bold, and then updates “fox jumped”
to be non-bold, while Bob marks only the word “jumped” as bold:

Alice:

The fox jumped.
bold

The fox jumped.
non-bold

Bob:

The fox jumped.
bold

The word “The” was set to bold by Alice and not changed by Bob, so it should be bold. The word
“fox” was set to non-bold by Alice and not changed by Bob, so it should be non-bold. But the word
“jumped” was set to non-bold by Alice, and to bold by Bob. In this case we have a conflict on the
word “jumped,” because the word cannot be both bold and non-bold at the same time. We therefore
have to make an arbitrary deterministic choice, just as in the previous example:

The fox jumped.
bold

or: The fox jumped.
bold bold

A user could even toggle some text back and forth between bold and non-bold several times. In
this case, we say that the latest state of Alice’s document conflicts with Bob’s latest state, but we do
not consider earlier states to be part of the conflict.

3.2.2 Multiple instances of the same mark. Example 6. There is one more case to consider for
handling overlapping marks of the same type. Consider the case where Alice and Bob both leave
comments on overlapping parts of the text:

Alice:

The fox jumped.
Alice’s comment

Bob:

The fox jumped.
Bob’s comment

The two comments are likely to have different content, and therefore we cannot merge them into
a single mark. Moreover, comments behave differently from the colored text in Example 4: although
a single character cannot be both red and blue, a single character in the text can have multiple
associated multiple comments. We can render this in the editor by showing the two highlight
regions overlapping:

The fox jumped.
Alice’s

comment
Bob’s

comment

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:11

3.3 Text insertion at span boundaries
Another case we need to consider is: when a user types new text somewhere in the document, what
formatting should those new characters have? We argued in Example 1 that if text is inserted into
the middle of a bold span, then that new text should also be bold. But it’s less clear what should
happen when text is inserted at the boundary between differently formatted portions of text.

Example 7. Let’s say we start with a document where the span “fox jumped” is bold, and the rest
is non-bold:

The fox jumped.
bold

Now Alice inserts “quick␣” before the bold span, and “␣over the dog” before the final period. In all
major rich text editors we tested (Microsoft Word, Google Docs, Apple Pages), the result is:

The quick fox jumped over the dog.
bold

That is, the text inserted before the bold span becomes non-bold, and the text inserted after the
bold span becomes bold. The general rule here is that an inserted character inherits the bold/non-
bold status of the preceding character. The same applies to most types of character formatting,
including italic, underline, font, font size, and text color. However, if text is inserted at the start
of a paragraph, where there is no preceding character in the same paragraph, then it inherits the
formatting of the following character.

Example 8. There are some exceptions to the rule in Example 7: if we insert text at the start or
end of a link, or the start or end of a comment, then the major rich text editors place the new text
outside of the link/comment span. For example, if “fox jumped” is a link:

The fox jumped.
link

After Alice inserts text like in Example 7, the result is:

The quick fox jumped over the dog.
link

That is, while a bold or italic span grows to include text inserted at the end of the span, a link
or comment span does not grow in the same way. Whether this behavior is desirable is perhaps
up for debate, but we note that popular rich text editors are remarkably consistent in this regard,
suggesting that this behavior is a deliberate design choice.

If the end of a link and the end of a bold span fall on the same character, and text is inserted
after that character, what should happen? The most consistent behavior would be for that text to
be bold but not linked. Microsoft Word behaves this way, whereas Google Docs and Apple Pages
make the new characters neither bold nor linked.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:12 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Table 1. Dimensions of behavior characterizing mark types

Can marks overlap? Do marks expand? Examples
No Yes Bold, italic, colored text
No No Links
Yes No Comments

3.4 Generalizing to other mark types
The above examples represent a test suite characterizing reasonable merging behaviors that preserve
user intent in a variety of common editing scenarios. While we have used specific formatting types
like bold and links to illustrate the behavior, these rules can apply more generally to other kinds of
formatting as well.

The formatting types we have described can be categorized along two axes:
• Can marks overlap? Is it possible for the same character to have more than one associated

mark of this type?
• Do marks expand? If a user types at the end of a mark, does it expand to contain the new

text?
Table 1 shows how our example formatting types fit into this taxonomy. We believe that most

inline formatting in rich text documents can fit into one of these categories; for example, underline
obeys the rules for bold and italic. Of course, the developers of a specific text editor could also choose
to change the behavior of a specific mark within this framework. For example, a developer might
decide that colored text marks should be allowed to overlap, with the overlap region rendering a
blend of the colors. From perspective of a collaboration algorithm, each mark type is just some
configuration of these parameters, and rendering is left as a concern for the UI layer.

4 PERITEXT: A RICH TEXT CRDT
We now introduce the approach we have taken for rich text collaboration in Peritext. We describe
our algorithm in four parts:
• Representing the textual content of a rich text document using an existing plain text CRDT
• Generating CRDT operations representing formatting changes
• Applying these operations to produce an internal document state
• Deriving a document suitable for a text editor, based on the internal state

Our approach in designing the algorithm was to capture the user input, and hence the user intent,
as closely as possible:
• insert operations are generated when the user types or pastes new characters somewhere

in the text;
• remove operations are generated when the user hits the backspace or delete key somewhere

in the text, or overwrites selected text;
• an addMark or removeMark operation is generated when the user selects some text and

chooses a formatting option from the menu or by keyboard shortcut. A “mark” is any
property that is applied to a contiguous substring of the text: for example, a word highlighted
in bold, or a sentence annotated with an inline comment.

4.1 The underlying plain text CRDT
Our implementation uses RGA [43] / Causal Trees [14] as its basis, although in principle it could
extend any plain text CRDT.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:13

Fig. 2. Our document model stores a Boolean flag alongside each character, which becomes True when the
character is deleted. Deleted characters remain in the document model as tombstones, which are needed to
handle concurrent edits.

Every operation that modifies the state of the document is given a unique, immutable identifier
called opId (operation ID). An opId is a Lamport timestamp [29]; we write it as a string of the form
counter@nodeId where counter is an integer and nodeId is a unique ID (e.g. UUID) of the client
that generated the operation. Whenever we make a new operation, we give it a counter that is one
greater than the greatest counter value of any existing operation in the document, from any client.
It is possible for two opIds to have the same counter value if different nodes generate operations
concurrently, but since a given client never uses the same counter value twice, the combination of
counter and nodeId is globally unique.

opIds are ordered as follows: counter1@node1 < counter2@node2 if counter1 < counter2
(using a numeric comparison); if counter1 == counter2 we break ties using a string comparison
of node1 and node2.

4.1.1 Inserting and deleting plain text. The key idea of most text CRDTs is to represent the text
as a sequence of characters, and to give each character a unique identifier. In our case, the ID of
a character is the opId of the operation that inserted the character. To insert a character into a
document, we generate an insert operation of the following form:
{ action: "insert", opId: "2@alice", afterId: "1@alice", character: "x" }

This operation inserts the character “x” after the existing character whose ID is 1@alice. To
determine the position where a character is inserted, we always reference the ID of the existing
character after which we want to insert, because these IDs remain stable over time. To insert at the
beginning of the document we use afterId: null. If two users concurrently insert at the same
position (i.e. with the same afterId), we order the insertions by their opId to ensure both users
converge towards the same sequence of characters.

To delete a character from a document, we generate a remove operation of the following form:
{ action: "remove", opId: "5@alice", removedId: "2@alice" }

This operation removes the existing character whose ID is 2@alice (i.e. the “x” we inserted
above). As before, we identify the deleted character by its ID than by its index. When we process a
remove operation, the character is not actually deleted from the document entirely, but we just
mark it as deleted, leaving behind a tombstone. That way, if another insert operation references the
deleted character’s ID in its afterId, we still know where to place the inserted character.

As shown in Figure 2, the state of the plain text document then consists of three things for each
character: the opId of the operation that inserted it, the actual character, and a flag to tell us whether
it has been deleted. In Figure 2, Alice (nodeId A) first typed the text “the fox,” generating opIds
1@A to 7@A. Then Bob (nodeId B) deleted the initial lowercase “t” (the deletion has opId 8@B) and
replaced it with an uppercase “T” (opId 9@B), and finally Bob typed the remaining text “␣jumped.”
(opIds 10@B to 17@B). The final text therefore reads “The fox jumped.” but the lowercase “t” is still
in the sequence, marked as deleted.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:14 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Fig. 3. Conceptually, each character has two formatting anchor positions: one before the character, and one
after. Anchor positions determine whether a formatting operation will be extended when new text is inserted
on the boundary. For simplicity, subsequent figures will only show anchor positions with attached mark
operations.

That is all we need to implement collaborative editing of plain text: inserting a single character,
and removing a single character. Larger operations, such as cutting or pasting an entire paragraph,
turn into many single-character operations. This can be optimized to be more efficient (as discussed
in Section 4.7), but for now, single-character insertions and deletions are sufficient.

4.2 Generating inline formatting operations
The next step is to allow the formatting of the text to be changed. Every time the user modifies
the formatting of the document, we generate either an addMark or a removeMark operation. For
example, if Alice selects the text “fox jumped” and hits Ctrl+B to make it bold, we generate the
operation below, shown in Figure 3:
{

action: "addMark",
opId: "18@A",
start: { type: "before", opId: "5@A" },
end: { type: "before", opId: "17@B" },
markType: "bold"

}

This operation has an opId of 18@A. It takes the span of text starting with the character whose ID
is 5@A (i.e. the “f” of “fox”), and ending with the character whose ID is 17@B (the final period). All
characters in this span (including the start character, but excluding the end character) become bold.

The start and end positions of the span are denoted using anchor positions that refer to characters
by their IDs. Each character in the text has two anchor positions, before and after the character,
where the start and end of a formatting operation can be attached.

4.2.1 Removing a mark. If the user changes their mind and decides that the text should not be bold
or linked after all, we do not remove the addMark operation. In fact, we never remove an operation,
we only ever generate new operations (we show in Section 4.7 how to weaken this assumption).
Instead, we generate a removeMark operation that undoes the effect of the earlier addMark and
sets a sequence of characters back to be non-bold. For example, the following operation, shown in
Figure 4, makes “␣jumped” non-bold:
{

action: "removeMark",
opId: "20@A",
start: { type: "before", opId: "10@A" },
end: { type: "before", opId: "17@B" },

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:15

Fig. 4. We can undo any part of a mark by applying the corresponding removeMark operation. Here, we
unbold the characters ␣jumped, while ensuring that subsequent insertions after fox remain bold.

markType: "bold"
}

To remove a prior mark entirely, the start and end of the removeMark operation should be
the same as for the addMark that should be overwritten. In general, a removeMark can start and
end on any character, regardless of its current formatting, and the effect is to set that span to be
non-bold/non-linked/non-italic/etc.

4.2.2 Inserting text at span boundaries. A formatting change always occurs in the gap between
two characters. The type: "before" properties in the example addMark operation indicate that
the bold span starts in the gap immediately before the “f” (i.e. the “f” is bold, but the preceding
space is not), and the bold span ends in the gap immediately before the “.” (i.e. the “d” of “jumped”
is bold, but the period is not). We could also choose type: "after" if we wanted a span to start or
end on the gap immediately after a particular character. Moreover, the start property could be
"startOfText" if we want the span to always start right at the beginning of the document, and
the end property could be "endOfText" if we want it to end after the last character.

If another user inserts text within that span, like in Example 1 in Section 3.1, those new characters
still fall within the range defined by the addMark operation, and so they are also formatted bold.
And when text is inserted at the boundaries of the bold span, it behaves like in Example 7: text
inserted before the “f” is non-bold, whereas text inserted between the “d” and the period is bold,
because it still falls within the span before the period.

The reason that each character has two distinct anchor positions is that this allows us to customize
how marks expand at span boundaries. For example, unlike bold formatting, links should not grow
when text is inserted at the end, as shown in Example 8. To achieve this behavior, we model the
addMark operation for a link so that it ends in the gap immediately after the the last character of
the mark, as in this operation (shown in Figure 5):
{

action: "addMark",
opId: "19@A",
start: { type: "before", opId: "5@A" },
end: { type: "after", opId: "16@B" },
markType: "link",
url: "https://www.google.com/search?q=jumping+fox"

}

The result is that the “d” of “jumped” is still part of the link, but any text that is inserted after
that character will not be part of the link.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:16 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Fig. 5. Mark types can include additional metadata, such as a hyperlink. Note that unlike bold marks, which
end on the character after the span, links end on the last character of the span. This approach prevents the
link from growing when new text is appended.

Fig. 6. When a character is marked as deleted, we preserve any attached operations. To insert before the
period without growing the link, the insertion should be placed after the tombstone 16@B.

Note also that an operation with markType: "link" has an additional url attribute. To change
the URL that a link points to, we simply generate another addMark operation with a new URL
and the same start and end. For a comment, we include only a unique comment ID in the actual
addMark operation, and we store the text, author, timestamp, and other details of the comment in a
separate CRDT.

A transition from bold to not-bold could happen not only because of the end of an addMark,
but also because of the start of a removeMark (and vice versa for transition from not-bold to bold).
To maintain the rule that an inserted character is formatted the same as the preceding character,
removeMark operations use type: "before" on both start and end for bold and similar types of
marks. For example, if we are in the state shown in Figure 4 and then insert “␣suddenly” immediately
after the “x,” it will be bold, because it falls within the addMark span but not within the removeMark
span.

Inserting a character at the start of a paragraph requires a special case: we have to first insert
the character, and then (if necessary) generate additional formatting operations so that the inserted
character is given the same formatting as its successor.

For marks that should not grow at the end, such as links and comments (cf. Table 1), addMark uses
type: "before" for start and type: "after" for end. For removeMark the roles are reversed:
these operations use type: "after" for start and type: "before" for end. This ensures that
when text is inserted at the end of a link, that text is not part of the link, regardless of whether the
link is ending because it’s the end of the addMark that created it, or the beginning of a removeMark
that removed the link property from the subsequent characters.

One more detail is required to ensure that insertions at the end of a link behave correctly: it
could happen that the character to which the link end is anchored is deleted (a tombstone). In the
example in Figure 6, “fox jumped” was linked, and then the word “jumped” was deleted.

Now assume the user wants to replace “jumped” with “frolicked,” so they insert that word after
the space 10@B. This position is at the end of the link (the next visible character, the period, is not
part of the link), so we expect the new character to be non-linked because links don’t grow. However,

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:17

when there are tombstones at the position where a new character is inserted, our plain text CRDT
by default places the inserted character before the tombstones. This would place “frolicked” before
the tombstones of “jumped,” making it part of the link, which is undesirable.

To fix this issue, if we need to insert a character at a position where there are tombstones, we
scan the list of tombstones at this position. If there are any tombstones whose “after” anchor is
the start or end of any formatting operation, we insert the character after the last such tombstone.
Otherwise we insert before the tombstones, as usual. In the example above, the after-anchor of
character “d” (16@B) is the end of addMark operation 19@A, and so we place the new word after
that character. This ensures that insertions at the end of a link are placed outside of the link.

If the list of tombstones contains anchors for the start or end of several formatting operations, it
is possible that no ideal insertion position exists. In this situation, the inserted text can be placed
arbitrarily relative to the tombstones, and the worst-case outcome is that the text is formatted
differently from what was desired. We believe that this situation is rare enough that it is acceptable
for the user to manually adjust the formatting in this case.

4.3 Applying operations
We now show how our algorithm applies operations (from either the local author or a remote
collaborator) to update the internal CRDT state. We must ensure that applying concurrent operations
is commutative: when two operations were generated concurrently, we can apply those operations
in any order, and the resulting document must be the same.

Inserting and deleting characters is straightforward; we use the RGA plain text CRDT logic
described in Section 4.1. But applying an addMark or removeMark operation requires a new approach
and is one of the key steps in our algorithm.

As described above, each character has two associated anchor positions for formatting operations,
one before and one after the character. At each of these anchor positions, we may store a set
of operations, which we call an op-set. The op-sets may also be absent; when a character is first
inserted, its op-sets on both anchor positions are absent. An op-set that is absent is different from
an op-set that is present but empty; in our prototype, an absent op-set is represented as null.

If an op-set 𝑆 is present at an anchor position 𝑝 , it has the following meaning:

• 𝑆 contains exactly the set of addMark and removeMark operations which overlap with that
anchor position. In other words, each op in 𝑆 starts at or before 𝑝 , and ends after 𝑝 .
• The same op-set 𝑆 also applies to a contiguous span of all positions following 𝑝 where the

op-set is absent; op-sets are only present at positions where the formatting may change. This
is a kind of compression: we could redundantly store the same op-set on many anchors, but
it saves memory to only store op-sets at boundaries of formatting spans.

Algorithm 1 shows pseudocode for the process of applying an addMark or removeMark operation
to the CRDT state. In summary: let 𝑜𝑝𝑠𝐴𝑡 be a mutable list containing op-sets, indexed by anchor
positions. We write opsAt [𝑝] = ⊥ to denote that the op-set is absent at anchor position 𝑝 . We start
by updating the op-set at the start position of the new operation. We then update any existing
op-sets within the span of the operation. Finally, we add an op-set at the end position of the
operation which does not contain the operation, to mark that the active operations have changed
at that point in the sequence.

We can demonstrate this process with an example. Imagine we start with the text “The fox
jumped.” with no formatting, and Alice wants to bold the first two words. She generates an addMark
operation that starts before the “T” (9@B) and ends before the space following “x” (10@B). Alice
applies this operation to her own document data structure by setting the op-set to the left of the

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:18 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Algorithm 1 Apply operation op of type addMark or removeMark
function ApplyOp(op: AddMarkOp | RemoveMarkOp)

start ← starting anchor position of op
end ← ending anchor position of op
if opsAt [start] = ⊥ then ⊲ Create/update op-set at the start position

opsAt [start] ← FindPrevious(start) ∪ {op}
else

opsAt [start] ← opsAt [start] ∪ {op}
end if

for pos such that start < pos < end do ⊲ Iterate rightwards; update op-sets within op
if opsAt [pos] ≠ ⊥ then

opsAt [pos] ← opsAt [pos] ∪ {op}
end if

end for

if opsAt [end] = ⊥ then ⊲ Update the op-set at the end position
opsAt [end] ← FindPrevious(end) − {op}

end if
end function

function FindPrevious(pos: AnchorPosition) ⊲ Find nearest op-set to left of given anchor
while pos ≠ ⊥ do

if opsAt [pos] ≠ ⊥ then
return opsAt [pos]

end if
pos← pos.prev ⊲ Iterate towards beginning of document

end while
return ∅ ⊲ If no op-set found, return empty set

end function

Fig. 7. The state of Alice’s document after applying a local bold operation.

first character (9@B) to be a set containing that addMark operation, and setting the op-set to the left
of the second space character (10@B) to be the empty set. The result is shown in Figure 7.

Concurrently, Bob italicizes the last two words and the period, as in Example 3 in Section 3.2,
and illustrated in Figure 8. He generates an addMark operation for this span, which starts before

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:19

Fig. 8. The state of Bob’s document after applying a local italic operation.

Fig. 9. The state of Alice’s document after applying a remote operation from Bob.

the “f” and runs until the end of the text (i.e. after the last character). Bob has not yet seen Alice’s
bold operation when he generates an italic operation.

Next, we consider what happens when Alice locally applies Bob’s operation (Figure 9). The first
step is to update the op-set at the start position. In the example, the op-set to the left of the “f”
character is absent, so we copy the op-set before the “T” character and add the italic operation to it.
Next, we run the loop that iterates through all anchor positions within the span of the operation.
We encounter an existing op-set to the left of the second space character: this was previously the
empty set, and we add the italic operation to it. Finally, we update the op-set for the end position,
because that position now marks a change in the formatting. In the example, the italic operation
ends at endOfText, and we initialize it to be the empty set. Figure 9 shows the final state of the
document after applying the operation. Our invariant has been preserved; each op-set contains
exactly the formatting operations that pertain to the subsequent span of characters.

We prove in Appendix A that this algorithm is commutative: no matter in which order the
formatting operations are applied, we end up in the same final state. Moreover, it is efficient: we
only need to scan over the part of the document that is affected by the formatting operation, not
the whole document.1

1When the first formatting operation is added to a document, FindPrevious will have to go all the way to the beginning of
the document, which might be slow on a large document. To speed this up, we can use the following trick: when inserting
characters, on some characters (say one in a thousand, chosen randomly) we initialize their op-set to be a copy of the closest
preceding op-set (or an empty set if there is none). This has no effect on the correctness of the algorithm, but it ensures that
when searching for the closest preceding op-set, we will find one that is present after scanning backwards for only about
1,000 characters (on average), thereby avoiding having to scan the entire document.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:20 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Fig. 10. For each span in the text, we must convert the set of all historical mark operations into a current
formatting state for that span. In the case of the example from above, we compute that the word fox is both
bold and italic.

4.4 Producing a final document
The algorithm in the previous section subdivided the document into spans, each associated with
a set of mark operations. However, this is not enough to display a formatted document. Each
op-set may contain many addMark and removeMark operations referring to the same formatting
attributes; we need to convert this op-set into a current formatting state, using an algorithm that is
deterministic and independent of the order that operations were received.

To produce a final document, we can iterate over the spans in the document, and for each one
convert the associated op-set into a description of the current formatting, like this:
[

{ text: "The ", format: { bold: true } },
{ text: "fox", format: { bold: true, italic: true } },
{ text: " jumped.", format: { italic: true } }

]

Because each operation affects only the aspect indicated by its markType (bold, italic, etc.), we
can consider the operations for each markType separately. In the example from the previous section,
we can easily see that the word “fox” should be both bold and italic, because the bold and italic
operations overlap with that word (Figure 10).

However, in other cases, the conversion process might be more complicated. There may be
multiple operations with the same markType for the same span: for example, some text may be
bolded and unbolded again several times. With most mark types, the values indicated by different
operations are mutually exclusive: a character must be either bold or non-bold; a character cannot
have more than one text color. For these mark types, we use a last-write-wins conflict resolution
policy, choosing the formatting operation with the maximum operation ID as the winner.

For example, take a span to which two operations apply: an addMark operation with ID 19@A, and
a removeMark operation with ID 23@B, both with markType: "bold". We determine the winning
operation by comparing their opIds using the ordering defined in Section 4.1. The removeMark
operation takes precedence because 23@B > 19@A, and therefore this span is non-bold.

Recall that whenever we make a new operation, we give it an opId with a counter that is one
greater than the greatest counter value of any existing operation in the document. This ensures

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:21

that if the user changes their mind about formatting several times — for example, if they toggle the
same word between bold and non-bold several times — then the final formatting operation will
have the greatest counter and therefore take precedence over all the earlier operations.

In fact, for the purposes of determining the current formatting of a document, it is not strictly
necessary to store the sets of all historical formatting operations: it would be sufficient to store the
latest value for each mark type and each span, along with the opId that set that value. However,
storing the set of formatting operations is useful if we want to compute what a document looked
like sometime in the past, for the purpose of visualizing the differences between versions of a
document. Although the current version of Peritext does not support this feature, we believe it is
important for asynchronous collaboration, and we plan to add it in the future.

Not all mark types are mutually exclusive—in the case of comments, it is possible for several
comments to be associated with the same span, and thus we retain all of the comments for which
there is no corresponding removeMark operation that deletes the comment.

As further optimizations, we can avoid computing the current formatting for any spans that
only contain deleted characters (tombstones), since they do not show up in a WYSIWYG editor,
and we can concatenate any adjacent spans whose current formatting is identical.

4.5 Incremental patches
We have described a “from-scratch” method for iterating over all the spans in a document and
producing a current document state. This is simple to understand, and is a reasonable approach
when a document is first loaded, but it is not ideal for ongoing editing. One problem is performance:
the from-scratch approach would need to iterate through the whole document on every keystroke,
which can become slow in large documents. It also does not match the conceptual model of most
text editing UI libraries—a text editor is typically implemented as a stateful object, so each edit
should describe what changed in the document, not provide a whole new document state.

To address these issues, we have implemented an incremental approach to sending updates to
the text editor UI. The key idea is to augment the process of applying an operation: in addition to
updating the internal op-sets, we also produce patches that describe the effects of that operation on
the publicly visible formatted document. This helps with performance, because the entire process
of incorporating a new operation and updating the editor UI only needs to work in the local region
of the document affected by that operation.

To process an insert operation, we first use the existing RGA algorithm to determine the
insertion position for the new character, and compute its index. To compute the index of the
character, we can count the number of non-deleted characters that precede the insertion position.
There are data structures [4] that can perform this index computation efficiently, without having to
scan the whole document, but they go beyond the scope of this paper.

In addition, we need to determine what formatting to apply to the inserted character. We do this
by searching backwards in the array of characters, starting from the insertion position, until we
find an op-set of formatting marks. From this set of operations we then compute the marks for the
inserted character using the usual last-write-wins logic, and then we construct a patch that inserts
a character with that formatting at the index we computed.

For example, a patch to insert the letter “x” at index 6 with bold formatting might look like this:

{ type: "insert", char: "x", index: 6, format: { bold: true } }

Note that patches use indexes, whereas operations use opIds to identify positions in the text. This
is fine because patches are only used to propagate updates from the CRDT to the text editing UI; by
running the CRDT logic on the same thread as the UI, we can avoid having to handle concurrency

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:22 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

between these two components. Operations that are sent from one user to another need to use
opIds since they need to handle concurrent updates.

A remove operation is the simplest to process: we find the character with the appropriate opId;
if it is already deleted, we do nothing; if it is not yet deleted, we mark it as deleted and compute the
index of the deleted character. We then construct a patch that asks the editor to delete the character
at that index.

When applying an addMark or removeMark operation, we don’t need to change any text in the
editor, but we may need to update the formatting of several spans of text. As described in Section 4.3,
we iterate through contiguous spans in the document, adding the new operation to the op-set for
that span. For each span, we then consider whether or not to emit a patch expressing a change in
formatting. We use the last-writer-wins logic to compute the formatting for both the old op-set
and the newly updated op-set, and compare them. If the formatting has changed, then we emit a
patch that updates the formatting for that span.

One interesting consequence of this approach is that applying a formatting operation will
sometimes only emit patches for some parts of the operation’s span. For example, an operation to
bold the entire document might emit patches to only bold certain sections of the document, if there
are other concurrent operations that negate its effects on the other sections.

The exact details of emitting a patch are somewhat subtle, because we are forced to entangle the
logic for applying an operation with the logic for computing its effects. However, it is straightforward
to check the correctness of an implementation, by accumulating incremental patches and then
comparing the result to the simpler from-scratch algorithm described in the previous section. We
refer the reader to the code in our supplemental material for a full implementation of emitting
patches.

4.6 Prototype implementation
We have implemented a working prototype of the Peritext CRDT in TypeScript [31]. Our code
is based on a simplified version of the Automerge CRDT library [25], and we hope to integrate
our algorithm into Automerge in the future. The implementation contains unit tests of many
specific scenarios described in this work, as well as a randomized property-based testing suite
that checks for convergence. We have tested random edit traces of over 5,000 operations being
exchanged between three peers without violating convergence. This gives us confidence that the
implementation is correct, because we were able to find several coding bugs in earlier versions of
our implementation with much smaller edit traces. A formal proof that our algorithm converges is
presented in Appendix A.

For the editor UI, we chose to build on ProseMirror [18], a popular library that is already used in
many collaborative editing contexts (usually with OT). Its modular design gave us the necessary
flexibility to intervene in the editor’s dataflow at appropriate points. We also expect that Peritext
would integrate well with other editor UIs since we did not specialize the design to ProseMirror in
particular.

Currently, our implementation is somewhat specialized to the small set of marks shown in this
paper: bold, italic, links, and comments. However, we intend these to be a representative set of
formatting marks, and expect that their behavior would extend to other kinds of user-configurable
marks as well.

4.7 Performance and efficiency
Our algorithm is designed with performance in mind: in particular, updates only operate locally on
the text they touch, and do not require scanning or recomputing the entire document. However, we
have prioritized simplicity over performance in some areas: we store each character as a separate

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:23

object (which uses a lot of memory); we remember all tombstones and the history of all formatting
operations; and the process of finding the character with a particular opId, and computing its index,
is not optimized.

These areas in which we have prioritized simplicity are not fundamental to the algorithm, and
can be addressed with some implementation effort. For example, Automerge [25] and other CRDTs
that support plain text collaboration use a compressed representation [1] of the character sequence,
in which characters with consecutive opIds are represented as a simple string rather than an object
per character. They also feature data structures that make it efficient to convert an opId into a
character index and vice versa, which is needed for integration with editors such as ProseMirror.

We have described Peritext in a simple system model where every operation is stored forever, and
it is based on the RGA plain text CRDT, which needs to remember deleted characters as tombstones.
This design leads to unbounded storage growth, but it can be optimized in several ways:

• Instead of storing an op-set of addMark/removeMark operations at an anchor position, it is
sufficient to store the value (e.g. bold or non-bold) and highest opId for each mark type. For
example, if a word is toggled between bold and non-bold several times, we only need to retain
the latest state, and we can discard formatting operations whose effect has been overwritten.
• Mechanisms for garbage-collecting tombstones in RGA [43] apply also to Peritext. When a

tombstone is purged, any marks attached to that tombstone need to be moved to the closest
preceding or following character that is not being purged; when all characters within a
formatting span have been purged, the span can be deleted as well.
• It is also possible to use a tombstone-free plain text CRDT, such as Logoot [50], instead of RGA.

Since it is also based on a unique ID per character, the principle of attaching formatting to
character identifiers applies equally. If all characters within some formatting span have been
deleted, we still need to retain the formatting span, because another user may concurrently
insert a character into that span and thus “resurrect” it. A span can be deleted once causal
stability [2] has ensured that there will be no more concurrent insertions into that span.
• Even without garbage collection, storing all of the operations forever is not as expensive

as it may seem: Automerge’s compressed file format can store every single keystroke in
the editing history of a text document at a cost of less than one byte per operation. This
optimization can also be applied to Peritext.

5 CONCLUSION
In this work, we have analyzed the problem of merging concurrent edits to a rich text document.
We have shown that extending a plain text document with per-character formatting attributes, or
with control characters to indicate start and end of formatting spans, leads to situations in which
the authors’ intent is not preserved. In contrast, our approach of storing formatting annotations
outside of the text, and attaching them to characters via unique IDs, satisfies all of our intent
preservation scenarios and guarantees convergence. On this basis we have developed a rich text
CRDT that supports overlapping inline formatting, and shown how to implement it efficiently.

Peritext is only the first step towards a system for collaboration on rich text: it simply allows
two versions of a rich text document to be merged automatically. A full solution for collaboration
(especially asynchronous collaboration) will require further work on visualizing editing history and
changes, highlighting conflicts for manual resolution, and other features. Since Peritext works by
capturing a document’s edit history as a log of operations, it provides a good basis for implementing
those further features in the future.

Inline formatting is sufficient for short blocks of text, but longer documents often rely on more
sophisticated block elements or hierarchical formats, such as nested bullet points, which Peritext

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:24 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

currently does not model. Further work is required to ensure edits to block structures like bulleted
lists can be merged while preserving author intent. Hierarchical formatting constructs raise new
questions around intent preservation — for example, what should happen when users concurrently
split, join, and move block elements?

Another area for future exploration is moving and duplicating text within a document. If two
people concurrently cut-paste the same text to different places in a document, and then further
modify the pasted text, what is the most sensible outcome?

We hope that Peritext and other CRDTs for rich text will enable new collaboration workflows
which are not possible to build on top of existing data structures for storing text documents. Users
could try out their own divergent long-running branches and easily merge them back together with
powerful comparison views. People could choose to work in private, or to block out distracting
changes being made by others. Rather than seeing document history as a linear sequence of versions,
we could see it as a multitude of projected views on top of a database of granular changes.

DATA ACCESS STATEMENT
Our prototype implementation of Peritext is made freely available under the MIT License at
https://github.com/inkandswitch/peritext and at https://doi.org/10.17863/CAM.87326.

ACKNOWLEDGMENTS
Thanks to Notion for sponsoring Slim Lim’s contributions to this project; to Blaine Cook and Tim
Evans at Condé Nast for their input throughout the project; to Marijn Haverbeke for ProseMirror
and for other guidance; to Kevin Jahns and Seph Gentle for valuable feedback on our algorithm; to
Sam Broner, Daniel Jackson, Rae McKelvey, Ivan Reese, and Adam Wiggins for feedback on the paper,
and to the many editors, journalists, and writers who showed us how they work and shared their
insight and experience with us. Martin Kleppmann is supported by a Leverhulme Trust Early Career
Fellowship, the Isaac Newton Trust, Nokia Bell Labs, and crowdfunding supporters including Ably,
Adrià Arcarons, Chet Corcos, Macrometa, Mintter, David Pollak, Prisma, RelationalAI, SoftwareMill,
and Adam Wiggins.

REFERENCES
[1] Luc Andre, Stephane Martin, Gerald Oster, and Claudia-Lavinia Ignat. 2013. Supporting Adaptable Granularity of

Changes for Massive-scale Collaborative Editing. In Proceedings of the 9th IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing. ICST, Austin, United States. https://doi.org/10.4108/icst.
collaboratecom.2013.254123

[2] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. 2017. Pure Operation-Based Replicated Data Types.
arXiv:1710.04469 https://arxiv.org/abs/1710.04469

[3] Kenneth P Birman, André Schiper, and Pat Stephenson. 1991. Lightweight causal and atomic group multicast. ACM
Transactions on Computer Systems 9, 3 (Aug. 1991), 272–314. https://doi.org/10.1145/128738.128742

[4] Loïck Briot, Pascal Urso, and Marc Shapiro. 2016. High Responsiveness for Group Editing CRDTs. In Proceedings
of the 19th International Conference on Supporting Group Work. ACM, Sanibel Island Florida USA, 51–60. https:
//doi.org/10.1145/2957276.2957300

[5] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to Reliable and Secure Distributed Program-
ming (second ed.). Springer. https://doi.org/10.1007/978-3-642-15260-3

[6] Jason Chen, Zihua Li, and David Greenspan. [n.d.]. Quill Delta. https://github.com/quilljs/delta
[7] Szymon Cofalik and Anna Tomanek. 2018. Lessons learned from creating a rich-text editor with real-time collaboration.

https://ckeditor.com/blog/Lessons-learned-from-creating-a-rich-text-editor-with-real-time-collaboration/
[8] Convergence Labs, Inc. [n.d.]. Convergence Developer Guide: Real Time Models. https://docs.convergence.io/guide/

models/real-time-models/
[9] Convergence Labs, Inc. [n.d.]. Convergence Examples: Froala. https://examples.convergence.io/examples/froala/

[10] Aguido Horatio Davis, Chengzheng Sun, and Junwei Lu. 2002. Generalizing Operational Transformation to the
Standard General Markup Language. In ACM Conference on Computer Supported Cooperative Work (CSCW 2002). ACM,

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

https://doi.org/10.4108/icst.collaboratecom.2013.254123
https://doi.org/10.4108/icst.collaboratecom.2013.254123
https://arxiv.org/abs/1710.04469
https://arxiv.org/abs/1710.04469
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/2957276.2957300
https://doi.org/10.1145/2957276.2957300
https://doi.org/10.1007/978-3-642-15260-3
https://github.com/quilljs/delta
https://ckeditor.com/blog/Lessons-learned-from-creating-a-rich-text-editor-with-real-time-collaboration/
https://docs.convergence.io/guide/models/real-time-models/
https://docs.convergence.io/guide/models/real-time-models/
https://examples.convergence.io/examples/froala/

Peritext: A CRDT for Collaborative Rich Text Editing 531:25

58–67. https://doi.org/10.1145/587078.587088
[11] John Day-Richter. 2010. What’s different about the new Google Docs: Making collaboration fast. https://drive.googleblog.

com/2010/09/whats-different-about-new-google-docs.html
[12] Clarence A Ellis and Simon J Gibbs. 1989. Concurrency control in groupware systems. In ACM International Conference

on Management of Data (SIGMOD 1989). ACM, 399–407. https://doi.org/10.1145/67544.66963
[13] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford. 2017. Verifying Strong Eventual

Consistency in Distributed Systems. Proceedings of the ACM on Programming Languages 1, OOPSLA, Article 109 (Oct.
2017). https://doi.org/10.1145/3133933

[14] Victor Grishchenko. 2010. Deep hypertext with embedded revision control implemented in regular expressions. In 6th
International Symposium on Wikis and Open Collaboration (WikiSym 2010). ACM. https://doi.org/10.1145/1832772.
1832777

[15] Victor Grishchenko. 2021. Papyrus: rich text CRDT from 2012. https://github.com/gritzko/citrea-model/blob/master/
story.md

[16] Raman Gupta. 2015. Ritzy Editor. https://github.com/ritzyed/ritzy
[17] Marijn Haverbeke. 2015. Collaborative Editing in ProseMirror. https://marijnhaverbeke.nl/blog/collaborative-editing.

html
[18] Marijn Haverbeke. 2015. ProseMirror: A toolkit for building rich-text editors on the web. https://prosemirror.net/
[19] Claudia-Lavinia Ignat, Luc André, and Gérald Oster. 2017. Enhancing rich content wikis with real-time collaboration.

Concurrency and Computation: Practice and Experience 33, 8 (March 2017). https://doi.org/10.1002/cpe.4110
[20] Claudia-Lavinia Ignat and Moira C Norrie. 2003. Customizable Collaborative Editor Relying on treeOPT Algorithm.

In 8th European Conference on Computer-Supported Cooperative Work (ECSCW 2003). Springer, 315–334. https:
//doi.org/10.1007/978-94-010-0068-0_17

[21] Claudia-Lavinia Ignat and Moira C. Norrie. 2008. Multi-level Editing of Hierarchical Documents. Computer Supported
Cooperative Work 17 (2008), 423—468. https://doi.org/10.1007/s10606-007-9071-2

[22] Kevin Jahns. 2016. Rich Text type for Yjs. https://github.com/y-js/y-richtext
[23] Tim Jungnickel and Tobias Herb. 2015. TP1-valid Transformation Functions for Operations on ordered n-ary Trees.

https://arxiv.org/abs/1512.05949
[24] Leonard Kawell Jr., Steven Beckhardt, Timothy Halvorsen, Raymond Ozzie, and Irene Greif. 1988. Replicated document

management in a group communication system. In ACM Conference on Computer-Supported Cooperative Work (CSCW).
ACM. https://doi.org/10.1145/62266.1024798

[25] Martin Kleppmann. 2022. Automerge. https://github.com/automerge/automerge
[26] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-Free Replicated JSON Datatype. IEEE Transactions on

Parallel and Distributed Systems 28, 10 (April 2017), 2733–2746. https://doi.org/10.1109/tpds.2017.2697382
[27] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. 2019. Local-First Software: You

Own Your Data, in Spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software - Onward! 2019. ACM Press, Athens, Greece, 154–178.
https://doi.org/10.1145/3359591.3359737

[28] Michael Koch. 1994. Design Issues and Model for a Distributed Multi-User Editor. Computer Supported Cooperative
Work 3 (Sept. 1994), 359–378. https://doi.org/10.1007/BF00750746

[29] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7 (July 1978),
558–565. https://doi.org/10.1145/359545.359563

[30] Du Li and Rui Li. 2006. A performance study of group editing algorithms. In 12th International Conference on Parallel
and Distributed Systems (ICPADS 2006). IEEE. https://doi.org/10.1109/icpads.2006.18

[31] Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg. 2021. Peritext prototype implementation.
Available at https://github.com/inkandswitch/peritext. https://doi.org/10.17863/CAM.87326

[32] Michael MacFadden. [n.d.]. Convergence JavaScript Client: Transformation Functions. https://github.com/
convergencelabs/convergence-client-javascript/tree/master/src/main/model/ot/xform

[33] Stéphane Martin, Pascal Urso, and Stéphane Weiss. 2010. Scalable XML Collaborative Editing with Undo. In On the
Move to Meaningful Internet Systems (OTM 2010). Springer. https://doi.org/10.1007/978-3-642-16934-2_37

[34] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. 2013. LSEQ: an Adaptive Structure for
Sequences in Distributed Collaborative Editing. In 13th ACM Symposium on Document Engineering (DocEng). 37–46.
https://doi.org/10.1145/2494266.2494278

[35] David A Nichols, Pavel Curtis, Michael Dixon, and John Lamping. 1995. High-latency, low-bandwidth windowing in
the Jupiter collaboration system. In 8th Annual ACM Symposium on User Interface and Software Technology (UIST 1995).
ACM, 111–120. https://doi.org/10.1145/215585.215706

[36] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016. Near Real-Time Peer-to-Peer Shared Editing
on Extensible Data Types. In 19th International Conference on Supporting Group Work (GROUP 2016). ACM, 39–49.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

https://doi.org/10.1145/587078.587088
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/3133933
https://doi.org/10.1145/1832772.1832777
https://doi.org/10.1145/1832772.1832777
https://github.com/gritzko/citrea-model/blob/master/story.md
https://github.com/gritzko/citrea-model/blob/master/story.md
https://github.com/ritzyed/ritzy
https://marijnhaverbeke.nl/blog/collaborative-editing.html
https://marijnhaverbeke.nl/blog/collaborative-editing.html
https://prosemirror.net/
https://doi.org/10.1002/cpe.4110
https://doi.org/10.1007/978-94-010-0068-0_17
https://doi.org/10.1007/978-94-010-0068-0_17
https://doi.org/10.1007/s10606-007-9071-2
https://github.com/y-js/y-richtext
https://arxiv.org/abs/1512.05949
https://doi.org/10.1145/62266.1024798
https://github.com/automerge/automerge
https://doi.org/10.1109/tpds.2017.2697382
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1007/BF00750746
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/icpads.2006.18
https://github.com/inkandswitch/peritext
https://doi.org/10.17863/CAM.87326
https://github.com/convergencelabs/convergence-client-javascript/tree/master/src/main/model/ot/xform
https://github.com/convergencelabs/convergence-client-javascript/tree/master/src/main/model/ot/xform
https://doi.org/10.1007/978-3-642-16934-2_37
https://doi.org/10.1145/2494266.2494278
https://doi.org/10.1145/215585.215706

531:26 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

https://doi.org/10.1145/2957276.2957310
[37] Gérald Oster. 2016. wiki-transformation.md. https://gist.github.com/oster/04ca4fc1aaea7de58700
[38] Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad Imine. 2006. Tombstone Transformation Functions for

Ensuring Consistency in Collaborative Editing Systems. In 9th IEEE International Conference on Collaborative Computing
(CollaborateCom 2006). IEEE. https://doi.org/10.1109/colcom.2006.361867

[39] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2006. Data Consistency for P2P Collaborative Editing.
In ACM Conference on Computer Supported Cooperative Work (CSCW). https://doi.org/10.1145/1180875.1180916

[40] François Pacull, Alain Sandoz, and André Schiper. 1994. Duplex: A Distributed Collaborative Editing Environment
in Large Scale. In ACM Conference on Computer Supported Cooperative Work (CSCW 1994). ACM, 165–173. https:
//doi.org/10.1145/192844.192900

[41] Nuno Preguiça. 2018. Conflict-free Replicated Data Types: An Overview. arXiv:1806.10254 https://arxiv.org/abs/1806.
10254

[42] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Letia. 2009. A commutative replicated data type
for cooperative editing. In 29th IEEE International Conference on Distributed Computing Systems (ICDCS). https:
//doi.org/10.1109/ICDCS.2009.20

[43] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Replicated abstract data types: Building blocks
for collaborative applications. J. Parallel and Distrib. Comput. 71, 3 (March 2011), 354–368. https://doi.org/10.1016/j.
jpdc.2010.12.006

[44] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free Replicated Data Types. In
13th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2011). ACM, 386–400.
https://doi.org/10.1007/978-3-642-24550-3_29

[45] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. 1998. Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems. ACM Transactions on Computer-
Human Interaction 5, 1 (March 1998), 63–108. https://doi.org/10.1145/274444.274447

[46] Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen, and Wentong Cai. 2006. Transparent Adaptation
of Single-User Applications for Multi-User Real-Time Collaboration. ACM Transactions on Computer-Human Interaction
13, 4 (Dec. 2006), 531–582. https://doi.org/10.1145/1188816.1188821

[47] Chengzheng Sun, Yi Xu, and Agustina Ng. 2017. Exhaustive Search and Resolution of Puzzles in OT Systems Supporting
String-Wise Operations. In ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW
2017). ACM, 2504–2517. https://doi.org/10.1145/2998181.2998252

[48] David Sun, Steven Xia, Chengzheng Sun, and David Chen. 2004. Operational Transformation for Collaborative
Word Processing. In ACM Conference on Computer Supported Cooperative Work (CSCW 2004). ACM, 437–446. https:
//doi.org/10.1145/1031607.1031681

[49] Robert H Thomas. 1979. A majority consensus approach to concurrency control for multiple copy databases. ACM
Transactions on Database Systems 4, 2 (June 1979), 180–209. https://doi.org/10.1145/320071.320076

[50] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2009. Logoot: A Scalable Optimistic Replication Algorithm for
Collaborative Editing on P2P Networks. In 29th IEEE International Conference on Distributed Computing Systems
(ICDCS). 404–412. https://doi.org/10.1109/ICDCS.2009.75

[51] Steven Xia, David Sun, Chengzheng Sun, David Chen, and Haifeng Shen. 2004. Leveraging Single-User Applications
for Multi-User Collaboration: The CoWord Approach. In ACM Conference on Computer Supported Cooperative Work
(CSCW 2004). ACM, 162–171. https://doi.org/10.1145/1031607.1031635

A CORRECTNESS OF PERITEXT
The most common definition of correctness in collaborative editing systems requires the algorithm
to satisfy the following three properties [45, slightly paraphrased]:

Convergence: When the same set of operations have been applied at all sites, all copies of the
shared document are identical.

Causality preservation: Let 𝑂𝑏 be an operation that is generated by site 𝑠 , and let 𝑂𝑎 be an
operation that had already been applied by 𝑠 at the time 𝑂𝑏 was generated. Then all sites
apply 𝑂𝑎 before applying 𝑂𝑏 .

Intention preservation: For any operation𝑂 , the effects of applying𝑂 at all sites are the same
as the intention of 𝑂 , and the effect of applying 𝑂 does not change the effects of concurrent
operations.

In this appendix we show that the Peritext algorithm satisfies these properties.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

https://doi.org/10.1145/2957276.2957310
https://gist.github.com/oster/04ca4fc1aaea7de58700
https://doi.org/10.1109/colcom.2006.361867
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1145/192844.192900
https://doi.org/10.1145/192844.192900
https://arxiv.org/abs/1806.10254
https://arxiv.org/abs/1806.10254
https://arxiv.org/abs/1806.10254
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/1188816.1188821
https://doi.org/10.1145/2998181.2998252
https://doi.org/10.1145/1031607.1031681
https://doi.org/10.1145/1031607.1031681
https://doi.org/10.1145/320071.320076
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1145/1031607.1031635

Peritext: A CRDT for Collaborative Rich Text Editing 531:27

A.1 Causality preservation
We begin with the causality preservation property. Peritext is based on a monotonically growing
set of operations: even when text or formatting is deleted from a document, this edit takes the form
of new remove or removeMark operations being generated and applied. There is no user action
that causes the set of operations in a document to shrink.

A version of a document can be seen as the set of all operations that have ever been applied to it,
starting from the empty initial document. Thanks to the convergence property, this set uniquely
defines the resulting document state. To merge two document versions is then easy: we simply
take the union of the two sets of operations. This union operation also preserves the property that
the set of operations in a document grows monotonically over time.

To ensure causality preservation, we must additionally define a partial order→ over the set of
operations. For every operation there is a unique point in time when that operation was generated,
and this event took place in the context of a particular document version (namely the document
state in which the user input occurred). Let 𝑂𝑏 be an operation that was generated in the context
of document version 𝑉 , where 𝑉 is the set of all prior operations that had been applied when 𝑂𝑏

was generated. Then we say that 𝑂𝑎 → 𝑂𝑏 if and only if 𝑂𝑎 ∈ 𝑉 . Moreover, we say 𝑂𝑏 and 𝑂𝑐 are
concurrent iff 𝑂𝑐 ↛ 𝑂𝑏 and 𝑂𝑏 ↛ 𝑂𝑐 . It is not difficult to show that, as long as the set 𝑉 grows
monotonically over time, the relation→ is a strict partial order.

Causality preservation now requires ensuring that whenever 𝑂𝑎 → 𝑂𝑏 , operation 𝑂𝑎 is always
applied before 𝑂𝑏 , whereas concurrent operations can be applied in any order. There are several
possible approaches to achieve this:
• One option is to attach a vector clock to each operation, and to define→ in terms of vector

clock comparison, which is often the approach taken by causal broadcast protocols [3].
• Another approach is to maintain all operations for a particular document version in an

ordered log, and to append new operations at the end when they are generated. To merge
two document versions with logs 𝐿1 and 𝐿2 respectively, we scan over the operations in
𝐿1, ignoring any operations that already exist in 𝐿2; any operations that do not exist in 𝐿2
are applied to the 𝐿1 document and appended to 𝐿1 in the order they appear in 𝐿2. Thus,
operations are applied in the same order they appear in the log, and that order is consistent
with the→ relation.

Various optimizations exist to improve the efficiency of these baseline algorithms. Since causality
preservation mechanisms are well established, we refer to the literature [5] for further details.

A.2 Intention preservation
The definition of intention preservation given above depends on the precise meaning of the term
intention, which is difficult to formalize. Sun et al. [45] use the following, fairly loose definition:
“The intention of an operation 𝑂 is the execution effect that can be achieved by applying 𝑂 on
the document state from which 𝑂 was generated.” This definition leaves the desired behavior
unspecified in various situations:
• In the case of a new character 𝑋 originally inserted between two existing characters 𝐴 and 𝐵,

that insertion should take place between the same two characters at all sites, even if those
characters have moved to different document indexes in the meantime. If 𝐴 and/or 𝐵 have
been concurrently deleted, or if another insertion has concurrently occurred between 𝐴 and
𝐵, it is unclear what it means for the operation to have the “same effect”.
• In the case of a character𝑋 being deleted from some original context, then the same character
𝑋 should be deleted from the same context at all sites, even if that character has moved
to a different document index in the meantime. If the context has changed or if the same

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:28 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

character has been concurrently deleted by another user, it is again unclear what it means
for the operation to have the “same effect”.
• If one user marks a word as bold and another user marks the same word as non-bold, there

is no final state that preserves both users’ intentions and also ensures convergence, since a
word cannot be both bold and non-bold at the same time. One option would be to allow the
user to manually resolve the conflict, but it is unclear how manual resolution fits within the
intention preservation framework.

We believe that the best approach to intention preservation is to ask: “When two documents
are merged, which outcome would be the least surprising to users?” This is the question that led
us to the exploration in Section 3, and we found it most productive to analyze the algorithm’s
behavior in terms of concrete examples. While we did not employ formal user testing to measure
“surprisingness” of merge results, we hope that our reasoning in Section 3 about the most desirable
outcome in each example will be plausible to readers and provide a basis for further discussion.

Peritext achieves the desired merge result in all of the examples in Section 3:

Example 1 (insertion within the span of a concurrent formatting operation). Peritext
defines the start and end of a formatted span in terms of the IDs of the characters at both
ends. The formatting then applies to all characters within that range, regardless of whether
those characters existed at the time the formatting operation was generated, or whether they
were inserted concurrently or later. This results in the desired behavior in the example.

Example 2 (applying bold formatting to partially overlapping spans). After both oper-
ations have been applied, Peritext breaks the document into three spans: the span where
only Alice’s bold operation applies, the span where both operations apply, and the span
where only Bob’s bold operation applies. In each of these spans, the current formatting is
independently computed to be bold. As a result, the whole text is bold, as desired.

Example 3 (partially overlapping bold and italic operations). Like in Example 2, the text
is broken into three spans. In the middle span, where the operations overlap, there are two
operations with markType bold and italic, respectively. Since different markTypes are treated
independently, the middle span is set to be both bold and italic. The merged result thus has a
bold-only span, followed by a bold-italic span, followed by an italic-only span, as expected.

Example 4 (partially overlapping highlights in different colors). Like in the previous two
examples, we end up with three spans. In the first and last span, there is only a single highlight
operation that defines the color. In the middle span, where the highlights overlap, there are
two operations with the same markType, and a last-write-wins policy chooses one of the
colors arbitrarily but consistently, ensuring the same color is chosen at each replica.

Example 5 (conflicting bold and non-bold operations on a span). Like in Example 4, the
span with the conflicting operations uses a last-write-wins policy to choose either bold or
non-bold arbitrarily.

Example 6 (partially overlapping comments). In the span where the two comments over-
lap, there are two mark operations in the set. The comment mark type is configured so that
marks are allowed to overlap, so rather than using the last-write-wins policy to choose one,
we allow all of the comments to coexist in the final document.
For each comment operation we use a unique comment ID as the markType. The last-write-
wins policy chooses one value per markType as the current value for that markType, but
different markTypes are independent from each other. By using a different markType for each
comment, the span where the comments overlap can have multiple associated comments
without using last-write-wins to choose one of them.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:29

Example 7 (insertion at the boundaries of a bold span). For bold operations, the span starts
before the first bold character, and ends before the first non-bold character following the bold
span. When text is inserted immediately before the first bold character, it falls outside of
the bold span and is hence non-bold. When text is inserted immediately after the last bold
character (i.e. before the following non-bold character), it falls within the bold span and is
hence bold. This behavior is consistent with existing word processors.

Example 8 (insertion at the boundaries of a link). For link operations, the span starts be-
fore the first linked character, and ends after the last linked character. When text is inserted
immediately before the first linked character, or immediately after the last linked character,
it falls outside of the link, making it non-linked in both cases. If the end anchor of the link
operation falls on a character that has been marked as deleted (tombstone), the algorithm
described in Section 4.2.2 comes into play. When a character is inserted immediately after
the last non-tombstone character of the link, we scan over the tombstones starting from the
insertion position, and place the inserted character after the end anchor of the link span,
making it non-linked as required.

A finite list of examples can never serve as definitive proof that an algorithm is always “intention
preserving” for all possible documents. However, we believe that the examples above, and their
straightforward generalizations, provide us with sufficient confidence that the algorithm is as
unsurprising as possible to users, and hence preserves the users’ intentions.

A.3 Convergence
While intention preservation is a somewhat subjective correctness property, convergence has a
straightforward formal definition that lends itself to proofs. Convergence is also the key property
of the strong eventual consistency model that defines the correctness for CRDTs [13, 44].

In this section we prove that the Peritext algorithm converges. Rather than requiring that the
same set of operations has been applied at all sites, we prove a slightly stronger property:

Theorem A.1. For any two versions of a Peritext document, if the same set of operations has been
applied in both documents, then those documents are in the same state.

Proof. Let 𝐿1 be the log of operations in the order they were applied to one document, and
𝐿2 the log for the other document. Because both documents contain the same set of operations,
and because a given operation is not applied more than once, 𝐿2 is a permutation of 𝐿1. Moreover,
because of the causality preservation property from Appendix A.1 we know that for any two
operations 𝑂𝑎 and 𝑂𝑏 in the logs, if 𝑂𝑎 → 𝑂𝑏 then 𝑂𝑎 must precede 𝑂𝑏 in both logs.

We now start with 𝐿1 and repeatedly swap the order of pairs of adjacent operations until the
modified log is equal to 𝐿2. By Lemma A.9 it is always possible to transform 𝐿1 into 𝐿2 in this way;
moreover, we only ever need to swap operations that are concurrent. By Lemma A.2, concurrent
operations commute; when we swap two adjacent concurrent operations in a log, the document
state resulting from applying the operations in log order therefore remains unchanged at each
swap. Therefore, the document resulting from applying the operations in 𝐿1 is the same as that
resulting from 𝐿2, ensuring convergence. □

Lemma A.2. Let 𝑂𝑎 and 𝑂𝑏 be two concurrent operations on a Peritext document, and let 𝐷 be any
document version that contains all of the causal dependencies of 𝑂𝑎 and 𝑂𝑏 (that is, for any operation
𝑂 such that𝑂 → 𝑂𝑎 or𝑂 → 𝑂𝑏 ,𝑂 has already been applied to 𝐷). Then𝑂𝑎 and𝑂𝑏 are commutative:
that is, applying first𝑂𝑎 and then𝑂𝑏 to 𝐷 results in the same document state as applying first𝑂𝑏 and
then 𝑂𝑎 to 𝐷 .

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:30 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Proof. Peritext supports four types of operation: insert, remove, addMark, and removeMark.
We consider the following cases:

• Both 𝑂𝑎 and 𝑂𝑏 are insert operations.
Peritext relies on the RGA CRDT [43] to handle character insertions on the document text,
and our additions to support formatting do not affect the way insertions are handled. The
fact that two concurrent RGA insertion operations commute has been proven in earlier
work [13, 26], so we elide the proof here.
• Both 𝑂𝑎 and 𝑂𝑏 are remove operations.

Because 𝐷 contains all causally prior operations, the characters being deleted by 𝑂𝑎 and
𝑂𝑏 must exist in 𝐷 (possibly as tombstones). The effect of a remove operation is simply to
mark the appropriate character as deleted. Regardless of whether 𝑂𝑎 and 𝑂𝑏 delete the same
character or different characters, marking the characters as deleted has the same effect, no
matter in which order the operations are applied.
• One of 𝑂𝑎 and 𝑂𝑏 is an insert operation, and the other is a remove operation.

Without loss of generality, assume that 𝑂𝑎 is the insert and 𝑂𝑏 is the remove. If 𝑂𝑏 were to
remove the character inserted by 𝑂𝑎 , then we would have 𝑂𝑎 → 𝑂𝑏 , but since 𝑂𝑎 and 𝑂𝑏 are
concurrent, the character removed by 𝑂𝑏 must be different from the character inserted by
𝑂𝑎 . Since insertion is not affected by whether another character is marked as deleted, the
effect of 𝑂𝑏 (marking an existing character as deleted) and the effect of 𝑂𝑎 (inserting a new
character) are unrelated and can take place in either order.
• Each of 𝑂𝑎 and 𝑂𝑏 is either a addMark or a removeMark operation.

Then Lemma A.8 shows that the operations commute.
• One of𝑂𝑎 and𝑂𝑏 is a remove operation, and the other is an addMark or removeMark operation.

The effect of the remove operation is simply to mark a character as deleted, and it is not
affected by any formatting properties of the characters. Moreover, the effect of a formatting
operation does not depend on whether a character is marked as deleted. Therefore, the effect
of the two operations does not depend on the order in which they are applied.
• One of 𝑂𝑎 and 𝑂𝑏 is an insert operation, and the other is an addMark or removeMark

operation.
Without loss of generality, assume that𝑂𝑎 is the insert and𝑂𝑏 is the addMark or removeMark.
Since 𝐷 contains the causal dependencies of 𝑂𝑏 , the start and end characters used as anchors
by 𝑂𝑏 must exist in 𝐷 . Since 𝑂𝑎 and 𝑂𝑏 are concurrent, the character inserted by 𝑂𝑎 cannot
be one of the anchors of 𝑂𝑏 . Therefore the insertion position of 𝑂𝑎 must be either within
the span of 𝑂𝑏 (after its start and before its end), or outside of it. If it is outside, the two
operations do not interact, since a formatting operation only touches characters within its
span, so the order of applying 𝑂𝑎 and 𝑂𝑏 makes no difference.
If the insertion position is within the span of 𝑂𝑏 , consider first the case where 𝑂𝑏 is applied
before 𝑂𝑎 . In this case, the formatting operation 𝑂𝑏 first updates its start and end character,
and possibly also updates other characters within its span; thereafter𝑂𝑎 inserts a character on
which the op-sets are absent. An insertion operation is not affected by formatting information,
and therefore the insertion has the same effect as if 𝑂𝑏 had not happened.
Next consider the case where 𝑂𝑎 is applied before 𝑂𝑏 . In this case, the insertion has the same
effect as in the previous case. When the formatting operation 𝑂𝑏 is subsequently applied,
it updates its start and end character, and also scans over the characters within its span,
including the character inserted by 𝑂𝑎 . However, applying a formatting operation considers
each character independently, and for characters within its span it does not modify any
op-sets that are absent. Since these properties are absent for the character just inserted by

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:31

𝑂𝑎 , applying 𝑂𝑏 does not modify the character inserted by 𝑂𝑎 , and for all other characters
within its span 𝑂𝑏 has the same effect as if 𝑂𝑎 had not been applied. Therefore the combined
effect of 𝑂𝑎 and 𝑂𝑏 is the same, regardless of the order in which they are applied.

These cases cover all possible combinations of operation types for 𝑂𝑎 and 𝑂𝑏 . □

Definition A.3. Define an anchor position in some Peritext document 𝐷 to be any value that can
appear as the start or end property of a newly generated addMark or removeMark operation:
• {type: "before", opId: 𝑐} or {type: "after", opId: 𝑐}, where 𝑐 is the ID of an exist-

ing insert operation in 𝐷 ;
• {type: "startOfText"} or {type: "endOfText"}.

Definition A.4. Define a total order ≺ on anchor positions in a document 𝐷 such that:
• {type: "before", opId: 𝑐} ≺ {type: "after", opId: 𝑐} for any character ID 𝑐;
• {type: "after", opId: 𝑐1} ≺ {type: "before", opId: 𝑐2} whenever character 𝑐1 pre-

cedes character 𝑐2 in the document 𝐷 (other characters may appear between 𝑐1 and 𝑐2);
• {type: "startOfText"} ≺ {type: "before", opId: 𝑐} for any character ID 𝑐;
• {type: "after", opId: 𝑐} ≺ {type: "endOfText"} for any character ID 𝑐;
• ≺ is transitively closed, i.e. ∀𝑐1, 𝑐2, 𝑐3 . 𝑐1 ≺ 𝑐2 ∧ 𝑐2 ≺ 𝑐3 =⇒ 𝑐1 ≺ 𝑐3.

Definition A.5. Define opsAt(𝐷, 𝑝) to be the set of mark operations at a particular position 𝑝 in
the Peritext document 𝐷 , that is:
• If 𝑝 = {type: "before", opId: 𝑐} for some character ID 𝑐 , then opsAt(𝐷, 𝑝) is the op-set

associated with the anchor point before the character with ID 𝑐;
• if 𝑝 = {type: "after", opId: 𝑐} for some character ID 𝑐 , then opsAt(𝐷, 𝑝) is the op-set

associated with the anchor point after the character with ID 𝑐 .
We write opsAt(𝐷, 𝑝) = ⊥ to indicate that the op-set is absent.

Definition A.6. Define opsAtOrBefore(𝐷, 𝑝) to be:
• If opsAt(𝐷, 𝑝) ≠ ⊥ then opsAtOrBefore(𝐷, 𝑝) = opsAt(𝐷, 𝑝);
• If opsAt(𝐷, 𝑝) = ⊥ and ∃𝑝′ . 𝑝′ ≺ 𝑝 ∧ opsAt(𝐷, 𝑝′) ≠ ⊥ then opsAtOrBefore(𝐷, 𝑝) is the

non-absent op-set that most closely precedes 𝑝 in 𝐷 ;
• If opsAt(𝐷, 𝑝) = ⊥ and �𝑝′ . 𝑝′ ≺ 𝑝 ∧ opsAt(𝐷, 𝑝′) ≠ ⊥ then opsAtOrBefore(𝐷, 𝑝) = {}.

Definition A.7. Let 𝐷 be a Peritext document, and 𝑂𝑎 an operation. Then define 𝐷 ◦𝑂𝑎 as the
result of applying 𝑂𝑎 to the document 𝐷 .

Lemma A.8. Let 𝑂𝑎 and 𝑂𝑏 be two concurrent operations on a Peritext document such that each is
either a addMark or a removeMark operation. Let 𝐷 be any document version that contains all of the
causal dependencies of 𝑂𝑎 and 𝑂𝑏 . Applying first 𝑂𝑎 and then 𝑂𝑏 to 𝐷 results in the same document
state as applying first 𝑂𝑏 and then 𝑂𝑎 to 𝐷 .

Proof. An addMark or removeMark operation reads and modifies the op-sets of characters within
its span. We therefore show that all of the op-sets in the document after applying 𝑂𝑎,𝑂𝑏 are the
same as after applying𝑂𝑏,𝑂𝑎 . The current formatting of the document is then simply a deterministic
function of those op-sets (i.e. the last-write-wins logic for choosing the most recent value for each
markType); whenever the op-sets are identical in two documents, their formatting must also be
identical.

Let start𝑎 and end𝑎 be the start and end anchors of the span of 𝑂𝑎 respectively, and similarly let
start𝑏 and end𝑏 be the anchors of 𝑂𝑏 . Since 𝐷 contains the causal dependencies of the operations it
must contain start𝑎 , end𝑎 , start𝑏 , and end𝑏 . Formatting operations generated by Peritext always

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:32 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

Case (1):
𝑂𝑎

𝑂𝑏

start𝑎 end𝑎 start𝑏 end𝑏

Case (2):
𝑂𝑎

𝑂𝑏

start𝑎
start𝑏

(2a) (2b)

end𝑎
end𝑏

(2c)sub-case:

Case (3):
𝑂𝑎

𝑂𝑏

start𝑎
start𝑏

(3a) (3b)

end𝑎

(3c) (3d)

end𝑏

(3e)sub-case:

Case (4):
𝑂𝑎

𝑂𝑏

start𝑎

(4a) (4b)

start𝑏

(4c) (4d)

end𝑎
end𝑏

(4e)sub-case:

Case (5):
𝑂𝑎

𝑂𝑏

start𝑎

(5a) (5b)

end𝑎
start𝑏

(5c) (5d)

end𝑏

(5e)sub-case:

Case (6):
𝑂𝑎

𝑂𝑏

start𝑎

(6a) (6b)

start𝑏

(6c) (6d)

end𝑏

(6e) (6f)

end𝑎

(6g)sub-case:

Case (7):
𝑂𝑎

𝑂𝑏

start𝑎

(7a) (7b)

start𝑏

(7c) (7d)

end𝑎

(7e) (7f)

end𝑏

(7g)sub-case:

Fig. 11. Visualization of the possible interactions between two formatting operations. These cases and sub-
cases appear in the proof of Lemma A.8.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:33

have the property that start𝑎 ≺ end𝑎 and start𝑏 ≺ end𝑏 according to the order in Definition A.4.
We now consider the following cases, which are illustrated in Figure 11:

(1) start𝑎 ≺ end𝑎 ≺ start𝑏 ≺ end𝑏 or start𝑏 ≺ end𝑏 ≺ start𝑎 ≺ end𝑎 : the spans of the two
operations do not overlap. Since a formatting operation touches only characters within its
span, the two operations do not affect each other and thus trivially commute.
There is just one edge case: if opsAt(𝐷, start𝑏) = ⊥, and if𝑂𝑎 is applied before𝑂𝑏 , then when
applying 𝑂𝑏 , the closest preceding op-set opsAtOrBefore(apply(𝐷,𝑂𝑎), start𝑏) might be the
set at position end𝑎 , which was updated by 𝑂𝑎 . On the other hand, if 𝑂𝑏 is applied before 𝑂𝑎 ,
then we might have opsAt(𝐷, end𝑎) = ⊥, making the effect of 𝑂𝑏 dependent on whether 𝑂𝑎

was applied first.
However, if 𝑂𝑎 is applied first and opsAt(𝐷, end𝑎) = ⊥, 𝑂𝑎 initializes it to equal its closest
preceding op-set. This is the same set as 𝑂𝑏 would observe as its closest preceding op-set if
𝑂𝑎 had not been applied beforehand. Therefore, the effect of 𝑂𝑏 is the same, regardless of
whether 𝑂𝑎 is applied first.

(2) start𝑎 = start𝑏 ∧ end𝑎 = end𝑏 : the spans of the two operations are identical. We consider each
of the anchor positions within the operations’ span:

(a) Let𝑚 = opsAtOrBefore(𝐷, start𝑎). After applying 𝑂𝑎 and 𝑂𝑏 in either order, the op-set at
start𝑎 equals𝑚 ∪ {𝑂𝑎,𝑂𝑏}.

(b) Let𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with start𝑎 ≺ 𝑝 ≺ end𝑎 . If𝑚 = ⊥ is absent, it is still
absent after applying 𝑂𝑎 and 𝑂𝑏 in either order. If𝑚 ≠ ⊥ is present, the op-set at 𝑝 equals
𝑚 ∪ {𝑂𝑎,𝑂𝑏} after applying 𝑂𝑎 and 𝑂𝑏 in either order.

(c) Let 𝑚 = opsAtOrBefore(𝐷, end𝑎). After applying 𝑂𝑎 and 𝑂𝑏 in either order, the op-set at
end𝑎 equals𝑚.

(3) start𝑎 = start𝑏 ∧ end𝑎 ≠ end𝑏 : the two spans start at the same position, but one ends earlier
than the other. Without loss of generality, assume end𝑎 ≺ end𝑏 . We consider each of the
anchor positions within the larger span:

(a) Identical to case (2a).
(b) Identical to case (2b).
(c) Let𝑚 = opsAtOrBefore(𝐷, end𝑎). If𝑂𝑎 is applied first, the op-set at end𝑎 is first set to𝑚, and

then updated to 𝑚 ∪ {𝑂𝑏} after applying 𝑂𝑏 . If 𝑂𝑏 is applied first and opsAt(𝐷, end𝑎) ≠ ⊥,
then 𝑂𝑏 updates it to 𝑚 ∪ {𝑂𝑏} and 𝑂𝑎 leaves it unchanged. If 𝑂𝑏 is applied first and
opsAt(𝐷, end𝑎) = ⊥, then 𝑂𝑏 leaves it absent; when 𝑂𝑎 is applied next, it initializes the
op-set to be opsAtOrBefore(apply(𝐷,𝑂𝑏), end𝑎). This set must equal𝑚 ∪ {𝑂𝑏} according
to one of the previous two sub-cases (applying 𝑂𝑏 in case (3a) always results in a op-set at
position start𝑎 that is present and contains 𝑂𝑏). Thus, after applying 𝑂𝑎 and 𝑂𝑏 in either
order, the op-set at end𝑎 equals𝑚 ∪ {𝑂𝑏}.

(d) Let𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with end𝑎 ≺ 𝑝 ≺ end𝑏 . If𝑚 = ⊥ is absent, it is still
absent after applying 𝑂𝑎 and 𝑂𝑏 in either order. If𝑚 ≠ ⊥ is present, the op-set at 𝑝 equals
𝑚 ∪ {𝑂𝑏} after applying 𝑂𝑎 and 𝑂𝑏 in either order.

(e) Let 𝑚 = opsAtOrBefore(𝐷, end𝑏). After applying 𝑂𝑎 and 𝑂𝑏 in either order, the op-set at
end𝑏 equals𝑚.

(4) start𝑎 ≠ start𝑏 ∧ end𝑎 = end𝑏 : the two spans end at the same position, but one starts earlier
than the other. Without loss of generality, assume start𝑎 ≺ start𝑏 . We consider each of the
anchor positions within the larger span:

(a) Let𝑚 = opsAtOrBefore(𝐷, start𝑎). After applying 𝑂𝑎 and 𝑂𝑏 in either order, the op-set at
start𝑎 equals𝑚 ∪ {𝑂𝑎}.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

531:34 Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg

(b) Let 𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with start𝑎 ≺ 𝑝 ≺ start𝑏 . If 𝑚 = ⊥, it is still absent
after applying 𝑂𝑎 and 𝑂𝑏 in either order. If 𝑚 ≠ ⊥, the op-set at 𝑝 equals 𝑚 ∪ {𝑂𝑎} after
applying 𝑂𝑎 and 𝑂𝑏 in either order.

(c) Let 𝑚 = opsAtOrBefore(𝐷, start𝑏). If 𝑂𝑏 is applied first, the op-set at start𝑏 is first set to
𝑚 ∪ {𝑂𝑏}, and then updated to 𝑚 ∪ {𝑂𝑎,𝑂𝑏} after applying 𝑂𝑎 . If 𝑂𝑎 is applied first and
opsAt(𝐷, start𝑏) ≠ ⊥, then𝑂𝑎 updates it to𝑚∪{𝑂𝑎}, and𝑂𝑏 subsequently updates it to𝑚∪
{𝑂𝑎,𝑂𝑏}. If𝑂𝑎 is applied first and the op-set in𝐷 at start𝑏 is absent, then𝑂𝑎 leaves it absent;
when 𝑂𝑏 is applied next, it initializes the op-set to be opsAtOrBefore(apply(𝐷,𝑂𝑎), start𝑏).
This set must equal𝑚 ∪ {𝑂𝑎} according to one of the previous two sub-cases (applying 𝑂𝑎

in case (4a) always results in a op-set at position start𝑎 that is present and contains 𝑂𝑎). 𝑂𝑏

then adds itself to this set, resulting in 𝑚 ∪ {𝑂𝑎,𝑂𝑏}. Thus, after applying 𝑂𝑎 and 𝑂𝑏 in
either order, the op-set at start𝑏 equals𝑚 ∪ {𝑂𝑎,𝑂𝑏}.

(d) Let 𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with start𝑏 ≺ 𝑝 ≺ end𝑏 . If 𝑚 = ⊥, it is still absent
after applying 𝑂𝑎 and 𝑂𝑏 in either order. If 𝑚 ≠ ⊥, the op-set at 𝑝 equals 𝑚 ∪ {𝑂𝑎,𝑂𝑏}
after applying 𝑂𝑎 and 𝑂𝑏 in either order.

(e) Identical to case (2c).
(5) start𝑏 = end𝑎 or start𝑎 = end𝑏 : one span begins exactly where the other span ends. Without

loss of generality, assume start𝑎 ≺ end𝑎 = start𝑏 ≺ end𝑏 . We consider each of the anchor
positions within either of the spans:

(a) Identical to case (4a).
(b) Let 𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with start𝑎 ≺ 𝑝 ≺ end𝑎 . If 𝑚 = ⊥, it is still absent

after applying 𝑂𝑎 and 𝑂𝑏 in either order. If 𝑚 ≠ ⊥, the op-set at 𝑝 equals 𝑚 ∪ {𝑂𝑎} after
applying 𝑂𝑎 and 𝑂𝑏 in either order.

(c) Let𝑚 = opsAtOrBefore(𝐷, start𝑏). After applying 𝑂𝑎 and 𝑂𝑏 in either order, the op-set at
start𝑏 equals𝑚 ∪ {𝑂𝑏}.

(d) Let 𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with start𝑏 ≺ 𝑝 ≺ end𝑏 . If 𝑚 = ⊥, it is still absent
after applying𝑂𝑎 and𝑂𝑏 in either order. If𝑚 ≠ ⊥ is present, the op-set at 𝑝 equals𝑚∪{𝑂𝑏}
after applying 𝑂𝑎 and 𝑂𝑏 in either order.

(e) Identical to case (3e).
(6) start𝑎 ≺ start𝑏 ≺ end𝑏 ≺ end𝑎 or start𝑏 ≺ start𝑎 ≺ end𝑎 ≺ end𝑏 : one span falls entirely

within the other. Without loss of generality, assume start𝑎 ≺ start𝑏 ≺ end𝑏 ≺ end𝑎 . We
consider each of the anchor positions within the larger span:

(a) Identical to case (4a).
(b) Identical to case (4b).
(c) Identical to case (4c).
(d) Identical to case (4d).
(e) Let 𝑚 = opsAtOrBefore(𝐷, end𝑏). By a similar argument to case (4c), but without adding

𝑂𝑏 to the set, the op-set at end𝑏 equals 𝑚 ∪ {𝑂𝑎} after applying 𝑂𝑎 and 𝑂𝑏 in either order.
(f) Let 𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with end𝑏 ≺ 𝑝 ≺ end𝑎 . If 𝑚 = ⊥, it is still absent

after applying 𝑂𝑎 and 𝑂𝑏 in either order. If 𝑚 ≠ ⊥, the op-set at 𝑝 equals 𝑚 ∪ {𝑂𝑎} after
applying 𝑂𝑎 and 𝑂𝑏 in either order.

(g) Let 𝑚 = opsAtOrBefore(𝐷, end𝑎). After applying 𝑂𝑎 and 𝑂𝑏 in either order, the op-set at
end𝑏 equals𝑚.

(7) start𝑎 ≺ start𝑏 ≺ end𝑎 ≺ end𝑏 or start𝑏 ≺ start𝑎 ≺ end𝑏 ≺ end𝑎 : the spans partially overlap.
Without loss of generality, assume start𝑎 ≺ start𝑏 ≺ end𝑎 ≺ end𝑏 . We consider each of the
anchor positions within either of the spans:

(a) Identical to case (4a).
(b) Identical to case (4b).

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

Peritext: A CRDT for Collaborative Rich Text Editing 531:35

(c) Identical to case (4c).
(d) Let 𝑚 = opsAt(𝐷, 𝑝) at any position 𝑝 with start𝑏 ≺ 𝑝 ≺ end𝑎 . If 𝑚 = ⊥, it is still absent

after applying 𝑂𝑎 and 𝑂𝑏 in either order. If 𝑚 ≠ ⊥, the op-set at 𝑝 equals 𝑚 ∪ {𝑂𝑎,𝑂𝑏}
after applying 𝑂𝑎 and 𝑂𝑏 in either order.

(e) Identical to case (3c).
(f) Identical to case (3d).
(g) Identical to case (3e).

These cases cover all possible relative orderings of start𝑎 , end𝑎 , start𝑏 , and end𝑏 . □

Lemma A.9. Let 𝐿1 and 𝐿2 be two sequences of operations that are permutations of each other, with
no duplicates. Assume that both sequences are in a causal order, i.e. if 𝑂𝑎 → 𝑂𝑏 , then 𝑂𝑎 precedes
𝑂𝑏 in both sequences. Then 𝐿1 can always be transformed into 𝐿2 by repeatedly swapping adjacent,
concurrent operations.

Proof. By induction. The base case, where 𝐿1 and 𝐿2 contain no operations, is trivial. For the
inductive step, let 𝐿1 be any sequence of operations in causal order with no duplicates. Let 𝑂 be
any operation that could be appended to 𝐿1 by the Peritext algorithm, and let 𝐿′1 = 𝐿1 +𝑂 be the
sequence 𝐿1 with 𝑂 appended (the + operator stands for concatenation). Since every operation
generated by Peritext has a unique ID, 𝑂 cannot appear in 𝐿1, so 𝐿′1 has no duplicates. Moreover,
since Peritext preserves causality of operations, 𝐿′1 must also be causally ordered; therefore, there
can be no operation 𝑂 ′ in 𝐿1 such that 𝑂 → 𝑂 ′.

Let 𝐿′2 be any causally ordered permutation of 𝐿′1. Since 𝑂 must appear once in 𝐿′2, we can write
𝐿′2 = 𝐿prefix + 𝑂 + 𝐿suffix for some 𝐿prefix and 𝐿suffix. Let 𝐿2 = 𝐿prefix + 𝐿suffix; since this sequence
contains all of the operations besides 𝑂 , 𝐿2 must be a permutation of 𝐿1. Moreover, because there is
no operation 𝑂 ′ in 𝐿1 such that 𝑂 → 𝑂 ′, and the operations in 𝐿suffix are a subset of those in 𝐿1,
there cannot be any operations in 𝐿suffix that causally depend on 𝑂 (𝑂 ↛ 𝑂 ′ for every 𝑂 ′ in 𝐿suffix).
Since 𝐿′2 is causally ordered, 𝐿2 with 𝑂 removed must also be causally ordered. Further, since 𝐿′2 is
causally ordered, 𝑂 ′ ↛ 𝑂 for every operation 𝑂 ′ in 𝐿suffix, and therefore 𝑂 must be concurrent to
every operation in 𝐿suffix.

Since 𝐿1 and 𝐿2 are causally ordered permutations of each other, by the inductive hypothesis, 𝐿1
can be transformed into 𝐿2 by repeatedly swapping adjacent, concurrent operations. Therefore,
𝐿′1 = 𝐿1 + 𝑂 can be transformed into 𝐿2 + 𝑂 = 𝐿prefix + 𝐿suffix + 𝑂 by repeated swapping. Finally,
𝐿prefix + 𝐿suffix +𝑂 can be transformed into 𝐿′2 = 𝐿prefix +𝑂 + 𝐿suffix by repeated swapping (swapping
𝑂 with the preceding operation, one element of 𝐿suffix at a time, until the right position is reached).
Since 𝑂 is concurrent to every operation in 𝐿suffix, this shows that 𝐿′1 can be transformed into 𝐿′2 by
repeatedly swapping adjacent, concurrent operations. □

Received January 2022; revised April 2022; accepted August 2022

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 531. Publication date: November 2022.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Representing rich text as a tree
	2.2 Operational Transformation (OT) for rich text
	2.3 Conflict-free Replicated Data Types (CRDTs) for rich text

	3 Criteria for intent preservation
	3.1 Concurrent formatting and insertion
	3.2 Overlapping formatting
	3.3 Text insertion at span boundaries
	3.4 Generalizing to other mark types

	4 Peritext: A rich text CRDT
	4.1 The underlying plain text CRDT
	4.2 Generating inline formatting operations
	4.3 Applying operations
	4.4 Producing a final document
	4.5 Incremental patches
	4.6 Prototype implementation
	4.7 Performance and efficiency

	5 Conclusion
	Acknowledgments
	References
	A Correctness of Peritext
	A.1 Causality preservation
	A.2 Intention preservation
	A.3 Convergence

