
Local-First Software:
You Own Your Data, in spite of the Cloud

Martin Kleppmann
Department of Computer Science and Technology

University of Cambridge
Cambridge, United Kingdom

martin.kleppmann@cl.cam.ac.uk

Adam Wiggins
Ink & Switch

Berlin, Germany
adam@inkandswitch.com

Peter van Hardenberg
Ink & Switch

San Francisco, CA, USA
pvh@inkandswitch.com

Mark McGranaghan
Ink & Switch

Seattle, WA, USA
mark@inkandswitch.com

Abstract
Cloud apps like Google Docs and Trello are popular because
they enable real-time collaboration with colleagues, and they
make it easy for us to access our work from all of our devices.
However, by centralizing data storage on servers, cloud apps
also take away ownership and agency from users. If a service
shuts down, the software stops functioning, and data created
with that software is lost.

In this article we propose local-first software, a set of prin-
ciples for software that enables both collaboration and own-
ership for users. Local-first ideals include the ability to work
offline and collaborate across multiple devices, while also
improving the security, privacy, long-term preservation, and
user control of data.

We survey existing approaches to data storage and sharing,
ranging from email attachments to web apps to Firebase-
backed mobile apps, and we examine the trade-offs of each.
We look at Conflict-free Replicated Data Types (CRDTs):
data structures that are multi-user from the ground up while
also being fundamentally local and private. CRDTs have
the potential to be a foundational technology for realizing
local-first software.

We share some of our findings from developing local-first
software prototypes at the Ink & Switch research lab over
the course of several years. These experiments test the via-
bility of CRDTs in practice, and explore the user interface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’19, October 23–24, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6995-4/19/10. . . $15.00
https://doi.org/10.1145/3359591.3359737

challenges for this new data model. Lastly, we suggest some
next steps for moving towards local-first software: for re-
searchers, for app developers, and a startup opportunity for
entrepreneurs.

CCS Concepts • Human-centered computing → Col-
laborative content creation; Ubiquitous and mobile com-
puting systems and tools; • Computer systems organiza-
tion→ Peer-to-peer architectures; • Software and its engi-
neering→ Peer-to-peer architectures; Organizing principles
for web applications.

Keywords collaboration software, mobile computing, data
ownership, CRDTs, peer-to-peer communication

ACM Reference Format:
Martin Kleppmann, AdamWiggins, Peter vanHardenberg, andMark
McGranaghan. 2019. Local-First Software: You Own Your Data, in
spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN In-
ternational Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward! ’19), October 23–24,
2019, Athens, Greece. ACM, New York, NY, USA, 25 pages. https:
//doi.org/10.1145/3359591.3359737

1 Motivation: Collaboration and
Ownership

It’s amazing how easily we can collaborate online nowadays.
We use Google Docs to collaborate on documents, spread-
sheets and presentations; in Figma we work together on user
interface designs; we communicate with colleagues using
Slack; we track tasks in Trello; and so on. We depend on
these and many other online services, e.g. for taking notes,
planning projects or events, remembering contacts, and a
whole raft of business uses.

We will call these services “cloud apps,” but you could
just as well call them “Software as a Service” (SaaS) or “web-
based apps.” What they have in common is that we typically
access them through a web browser or through mobile apps,
and that they store their data on a server.

https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

Today’s cloud apps offer big benefits compared to earlier
generations of software: seamless collaboration, and being
able to access data from any device. As we run more and
more of our lives and work through these cloud apps, they
become more and more critical to us. The more time we
invest in using one of these apps, the more valuable the data
in it becomes to us.
However, in our research we have spoken to a lot of cre-

ative professionals,1 and in that process we have also learned
about the downsides of cloud apps.
When you have put a lot of creative energy and effort

into making something, you tend to have a deep emotional
attachment to it. If you do creative work, this probably seems
familiar. (When we say “creative work,” we mean not just
visual art, or music, or poetry — many other activities, such
as explaining a technical topic, implementing an intricate
algorithm, designing a user interface, or figuring out how to
lead a team towards some goal are also creative efforts.)

In the process of performing that creative work, you typi-
cally produce files and data: documents, presentations, spread-
sheets, code, notes, drawings, and so on. And you will want
to keep that data: for reference and inspiration in the future,
to include it in a portfolio, or simply to archive because you
feel proud of it. It is important to feel ownership of that data,
because the creative expression is something so personal.
Unfortunately, cloud apps are problematic in this regard.

Although they let you access your data anywhere, all data
access must go via the server, and you can only do the things
that the server will let you do. In a sense, you don’t have full
ownership of that data — the cloud provider does.2 In the
words of a bumper sticker [132]: “There is no cloud, it’s just
someone else’s computer.”
When data is stored on “someone else’s computer”, that

third party assumes a degree of control over that data. Cloud
apps are provided as a service; if the service is unavailable,
you cannot use the software, and you can no longer access
your data created with that software. If the service shuts
down, even though you might be able to export your data,
without the servers there is normally no way for you to
continue running your own copy of that software. Thus, you
are at the mercy of the company providing the service.

Before web apps came along, we had what we might call
“old-fashioned” apps: programs running on your local com-
puter, reading and writing files on the local disk. We still use
a lot of applications of this type today: text editors and IDEs,
Git and other version control systems, and many specialized

1Our research on software that supports the creative process is discussed
further in our articles “Capstone, a tablet for thinking” [81] and “The iPad
as a fast, precise tool for creativity” [135].
2We use the term “ownership” not in the sense of intellectual property law
and copyright, but rather as the creator’s perceived relationship to their
data. We discuss this notion further in Section 2.7.

software packages such as graphics applications or CAD
software fall in this category.3

In old-fashioned apps, the data lives in files on your local
disk, so you have full agency and ownership of that data:
you can do anything you like, including long-term archiv-
ing, making backups, manipulating the files using other pro-
grams, or deleting the files if you no longer want them. You
don’t need anybody’s permission to access your files, since
they are yours. You don’t have to depend on servers operated
by another company.

To sum up: the cloud gives us collaboration, but old-fash-
ioned apps give us ownership. Can’t we have the best of both
worlds? We would like both the convenient cross-device
access and real-time collaboration provided by cloud apps,
and also the personal ownership of your own data embodied
by “old-fashioned” software.

2 Seven Ideals for Local-first Software
We believe that data ownership and real-time collaboration
are not at odds with each other. It is possible to create soft-
ware that has all the advantages of cloud apps, while also
allowing you to retain full ownership of the data, documents
and files you create.
We call this type of software local-first software, since it

prioritizes the use of local storage (the disk built into your
computer) and local networks (such as your homeWiFi) over
servers in remote datacenters.
In cloud apps, the data on the server is treated as the

primary, authoritative copy of the data; if a client has a copy
of the data, it is merely a cache that is subordinate to the
server. Any data modification must be sent to the server,
otherwise it “didn’t happen.” In local-first applications we
swap these roles: we treat the copy of the data on your local
device — your laptop, tablet, or phone — as the primary copy.
Servers still exist, but they hold secondary copies of your
data in order to assist with access from multiple devices.
As we shall see, this change in perspective has profound
implications.

Here are seven ideals to strive for in local-first software.

2.1 No Spinners: Your Work at Your Fingertips
Much of today’s software feels slower than previous gen-
erations of software [91]. Even though CPUs have become
ever faster, there is often a perceptible delay between some
user input (e.g. clicking a button, or hitting a key) and the
corresponding result appearing on the display. In previous
work [95] we measured the performance of modern software
and analyzed why these delays occur.
3The software we are talking about in this article are apps for creating
documents or files (such as text, graphics, spreadsheets, CAD drawings, or
music), or personal data repositories (such as notes, calendars, to-do lists,
or password managers). We are not talking about implementing things like
banking services, e-commerce, social networking, ride-sharing, or similar
services, which are well served by centralized systems.

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 1. Server-to-server round-trip times between AWS datacenters in various locations worldwide. Data from Bailis et
al. [26].

With cloud apps, since the primary copy of the data is
on a server, all data modifications, and many data lookups,
require a round-trip to a server. Depending on where you
live, the server may well be located on another continent, so
the speed of light places a limit on how fast the software can
be (see Figure 1).

The user interface may try to hide that latency by showing
the operation as if it were complete, even though the request
is still in progress — a pattern known as Optimistic UI [92] —
but until the request is complete, there is always the possibil-
ity that it may fail (for example, due to an unstable Internet
connection). Thus, an optimistic UI still sometimes exposes
the latency of the network round-trip when an error occurs.
Local-first software is different: because it keeps the pri-

mary copy of the data on the local device, there is never a
need for the user to wait for a request to a server to complete.
All operations can be handled by reading and writing files on
the local disk, and data synchronization with other devices
happens quietly in the background.
While this by itself does not guarantee that the software

will be fast, we expect that local-first software has the po-
tential to respond near-instantaneously to user input, never
needing to show you a spinner while you wait, and allowing
you to operate with your data at your fingertips.

2.2 Your Work Is Not Trapped on One Device
Users today rely on several computing devices to do their
work, andmodern applicationsmust support suchworkflows.
For example, users may capture ideas on the go using their
smartphone, organize and think through those ideas on a
tablet [81], and then write up the outcome on their laptop.

This means that while local-first apps keep their data in
local storage on each device, it is also necessary for that data
to be synchronized across all of the devices on which a user
does their work. Various data synchronization technologies
exist, and we discuss them in detail in Section 3.
Most cross-device sync services also store a copy of the

data on a server, which provides a convenient off-site backup
for the data. These solutions work quite well as long as each
file is only edited by one person at a time. If several people
edit the same file at the same time, conflicts may arise, which
we discuss in Section 2.4.

2.3 The Network Is Optional
Personal mobile devices move through areas of varying net-
work availability: unreliable coffee shop WiFi, while on a
plane or on a train going through a tunnel, in an elevator
or a parking garage. In developing countries or rural areas,
infrastructure for Internet access is sometimes patchy. While
traveling internationally, many mobile users disable cellu-
lar data due to the cost of roaming. Overall, there is plenty
of need for offline-capable apps, such as for researchers or
journalists who need to write while in the field.
“Old-fashioned” apps work fine without an Internet con-

nection, but cloud apps typically don’t work while offline.
For several years the Offline First movement [55] has been
encouraging developers of web and mobile apps to improve
offline support, but in practice it has been difficult to retro-
fit offline support to cloud apps, because tools and libraries
designed for a server-centric model do not easily adapt to
situations in which users make edits while offline.

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

Figure 2. A conflicted copy on Dropbox [52]. The user must merge the changes manually.

Since local-first applications store the primary copy of
their data in each device’s local filesystem, the user can read
and write this data anytime, even while offline. It is then
synchronized with other devices sometime later, when a
network connection is available. The data synchronization
need not necessarily go via the Internet: local-first apps
could also use Bluetooth or local WiFi to sync data to nearby
devices.
Moreover, for good offline support it is desirable for the

software to run as a locally installed executable on your
device, rather than a tab in a web browser. Although it is
possible to makeweb apps work offline [88], it can be difficult
for a user to know whether all the necessary code and data
for an application have been downloaded. For mobile apps it
is already standard that the whole app is downloaded and
installed before it is used.

2.4 Seamless Collaboration with Your Colleagues
Collaboration typically requires that several people con-
tribute material to a document or file. However, in old-fash-
ioned software it is problematic for several people to work
on the same file at the same time: the result is often a conflict.
In text files such as source code, resolving conflicts is tedious
and annoying (see Figures 2, 3, and 4), and the task quickly

becomes very difficult or impossible for complex file formats
such as spreadsheets or graphics documents. Hence, collabo-
rators may have to agree up front who is going to edit a file,
and only have one person at a time who may make changes.

On the other hand, cloud apps such as Google Docs have
vastly simplified collaboration by allowing multiple users
to edit a document simultaneously, without having to send
files back and forth by email and without worrying about
conflicts. Users have come to expect this kind of seamless
real-time collaboration in a wide range of applications.
In local-first apps, our ideal is to support real-time col-

laboration that is on par with the best cloud apps today, or
better. Achieving this goal is one of the biggest challenges
in realizing local-first software, but we believe it is possible:
in Section 4 we discuss technologies that enable real-time
collaboration in a local-first setting.

Moreover, we expect that local-first apps can support var-
ious workflows for collaboration. Besides having several
people edit the same document in real-time, it is sometimes
useful for one person to tentatively propose changes that
can be reviewed and selectively applied by someone else.
Google Docs supports this workflow with its suggesting
mode (Figure 5, [69]), and pull requests serve this purpose
in Git (Figure 6, [61]).

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 3. In Evernote, if a note is changed concurrently, it is moved to a “conflicting changes” notebook [85], and there is
nothing to support the user in resolving the situation — not even a facility to compare the different versions of a note.

Figure 4. In Git and other version control systems, several people may modify the same file in different commits. Combining
those changes often results in merge conflicts [37, Section 3.2], which can be resolved using specialized tools (such as
DiffMerge [119], shown here). These tools are primarily designed for line-oriented text files such as source code; for other file
formats, tool support is much weaker.

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

Figure 5. In Google Docs, collaborators can either edit the document directly, or they can suggest changes [69], which can
then be accepted or rejected by the document owner.

Figure 6. The collaboration workflow on GitHub is based on pull requests [61]. A user may change multiple source files in
multiple commits, and submit them as a proposed change to a project. Other users may review and amend the pull request
before it is finally merged or rejected.

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 7. Cuneiform script on clay tablet, ca. 3000 BCE. Image from Wikimedia Commons [5].

2.5 The Long Now
An important aspect of data ownership is that you can con-
tinue accessing the data for a long time in the future. When
you do someworkwith local-first software, yourwork should
continue to be accessible indefinitely, even after the company
that produced the software is gone.
“Old-fashioned” apps continue to work forever, as long

as you have a copy of the data and some way of running
the software. Even if the software author goes bust, you can
continue running the last released version of the software.
Even if the operating system and the computer it runs on
become obsolete, you can still run the software in a virtual
machine or emulator.4 As storage media evolve over the
decades, you can copy your files to new storage media and
continue to access them.

On the other hand, cloud apps depend on the service con-
tinuing to be available: if the service is unavailable, you
cannot use the software, and you can no longer access your
data created with that software. This means you are betting
that the creators of the software will continue supporting it
for a long time — at least as long as you care about the data.
Although there does not seem to be a great danger of

Google shutting down Google Docs anytime soon, popu-
lar products (e.g. Google Reader) do sometimes get shut
down [106] or lose data [105], so we know to be careful.5
And even with long-lived software there is the risk that the

4For example, the Internet Archive maintains a collection of historical
software that can be run using an emulator in a modern web browser [83];
enthusiasts at the English Amiga Board [4] share tips on running historical
software.
5“Our Incredible Journey” [73] is a blog that documents startup products
getting shut down after an acquisition.

pricing or features change in a way you don’t like, and with a
cloud app, continuing to use the old version is not an option—
you will be upgraded whether you like it or not.
Local-first software enables greater longevity because

your data, and the software that is needed to read and mod-
ify your data, are all stored locally on your computer. We
believe this is important not just for your own sake, but also
for future historians who will want to read the documents
we create today (cf. Figure 7, [104]). Without longevity of
our data, we risk creating what Vint Cerf calls a “digital Dark
Age” [60].

Some file formats (such as plain text, JPEG, and PDF) are
so ubiquitous that they will probably be readable for cen-
turies to come. The US Library of Congress also recommends
XML, JSON, or SQLite [120] as archival formats for datasets.
However, in order to read less common file formats and to
preserve interactivity, you need to be able to run the original
software (if necessary, in a virtual machine or emulator).
Local-first software enables this.

2.6 Security and Privacy by Default
One problem with the architecture of cloud apps is that they
store all the data from all of their users in a centralized data-
base. This large collection of data is an attractive target for
attackers: a rogue employee [43, 47], or a hacker who gains
access to the company’s servers, can read and tamper with
all of your data. Such security breaches are sadly terrifyingly
common [136], and with cloud apps we are unfortunately at
the mercy of the provider.
While Google has a world-class security team, the sad

reality is that most companies do not. And while Google
is good at defending your data against external attackers,

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

the company internally is free to use your data in a myriad
ways, such as feeding your data into its machine learning
systems.6

Maybe you feel that your data would not be of interest to
any attacker. However, for many professions, dealing with
sensitive data is an important part of their work. For example,
medical professionals handle sensitive patient data, investiga-
tive journalists handle confidential information from sources,
governments and diplomatic representatives conduct sen-
sitive negotiations, and so on. Many of these professionals
cannot use cloud apps due to regulatory compliance and
confidentiality obligations.

Local-first apps, on the other hand, have better privacy and
security built in at the core. Your local devices store only your
own data, avoiding the centralized cloud database holding ev-
erybody’s data. Local-first apps can use end-to-end encryption
so that any servers that store a copy of your files only hold
encrypted data that they cannot read. Modern messaging
apps like iMessage [58], WhatsApp [133] and Signal [116]
already use end-to-end encryption, Keybase [87] provides
encrypted file sharing and messaging, and Tarsnap [123]
takes this approach for backups. We hope to see this trend
expand to other kinds of software as well.

2.7 You Retain Ultimate Ownership and Control
With cloud apps, the service provider has the power to
restrict user access: for example, in October 2017, several
Google Docs users were locked out of their documents be-
cause an automated system incorrectly flagged these docu-
ments as abusive [57]. In local-first apps, the ownership of
data is vested in the user.
To disambiguate “ownership” in this context: we don’t

mean it in the legal sense of intellectual property. A word
processor, for example, should be oblivious to the question
of who owns the copyright in the text being edited. Instead
we mean ownership in the sense of user agency, autonomy,
and control over data. You should be able to copy and modify
data in any way, write down any thought,7 and no company
should restrict what you are allowed to do.

In cloud apps, the ways in which you can access and mod-
ify your data are limited by the APIs, user interfaces, and
terms of service of the service provider. With local-first soft-
ware, all of the bytes that comprise your data are stored on

6Quoting from the Google Drive terms of service [72]: “Our automated
systems analyze your content to provide you personally relevant prod-
uct features, such as customized search results, and spam and malware
detection.”
7Under the European Convention on Human Rights [40], your freedom of
thought and opinion is unconditional [41] — the state may never interfere
with it, since it is yours alone — whereas freedom of expression (includ-
ing freedom of speech) can be restricted in certain ways, since it affects
other people. Communication services like social networks convey expres-
sion, but the raw notes and unpublished work of a creative person are a
way of developing thoughts and opinions, and thus warrant unconditional
protection [128].

your own device, so you have the freedom to process this
data in arbitrary ways.8
With data ownership comes responsibility: maintaining

backups or other preventative measures against data loss,
protecting against ransomware, and general organizing and
managing of file archives. For many professional and creative
users, as introduced in Section 1, we believe that the trade-off
of more responsibility in exchange for more ownership is
desirable. Consider a significant personal creation, such as a
PhD thesis or the raw footage of a film. For these you might
be willing to take responsibility for storage and backups in
order to be certain that your data is safe and fully under your
control.

3 Existing Data Storage and Sharing
Models

We believe professional and creative users deserve software
that realizes the local-first goals, helping them collaborate
seamlessly while also allowing them to retain full ownership
of their work. If we can give users these qualities in the
software they use to do their most important work, we can
help them be better at what they do, and potentially make a
significant difference to many people’s professional lives.

However, while the ideals of local-first software may res-
onate with you, you may still be wondering how achievable
they are in practice. Are they just utopian thinking?
In the remainder of this article we discuss what it means

to realize local-first software in practice. We look at a wide
range of existing technologies and break down how well
they satisfy the local-first ideals. The results are summarized
in Table 1. As we shall see, many technologies satisfy some
of the goals, but none are able to satisfy them all. Finally, we
examine a technique from distributed systems research that
might be a foundational piece in realizing local-first software
in the future.

3.1 How Application Architecture Affects User
Experience

Let’s start by examining software from the end user’s per-
spective, and break down how well different software ar-
chitectures meet the seven goals of local-first software. In
Section 3.2 we compare storage technologies and APIs that
are used by software engineers to build applications.

3.1.1 Files and Email Attachments
Viewed through the lens of our seven goals, traditional files
have many desirable properties: they can be viewed and
8In our opinion, maintaining control and ownership of data does not mean
that the software must necessarily be open source. Although the freedom
to modify software enhances user agency, it is possible for commercial
and closed-source software to satisfy the local-first ideals, as long as it
does not artificially restrict what users can do with their files. Examples of
such artificial restrictions are PDF files that disable operations like printing,
eBook readers that interfere with copy-paste, and DRM on media files.

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Table 1. Scoring various technologies with respect to the seven ideals of Section 2. ✓ means the technology meets the ideal,
means it partially meets the ideal, and means it does not meet the ideal.

Te
chn

olo
gy

Sec
tio
n

1. F
ast
(§
2.1
)

2. M
ult
i-d
evi
ce
(§
2.2
)

3. O
ffli
ne
(§
2.3
)

4. C
oll
abo

rat
ion

(§
2.4
)

5. L
on
gev

ity
(§
2.5
)

6. P
riv
acy

(§
2.6
)

7. U
ser

con
tro
l (§

2.7
)

Applications employed by end users

Files + email attachments § 3.1.1 ✓ ✓ ✓ ✓

Google Docs § 3.1.2 ✓ ✓

Trello § 3.1.2 ✓ ✓

Pinterest § 3.1.2 ✓ ✓

Dropbox § 3.1.3 ✓ ✓ ✓

Git + GitHub § 3.1.4 ✓ ✓ ✓ ✓

Technologies employed by application developers

Thin client (web apps) § 3.2.1 ✓ ✓

Thick client (mobile apps) § 3.2.2 ✓ ✓

Backend-as-a-service § 3.2.3 ✓ ✓

CouchDB § 3.2.4 ✓

edited offline, they give full control to users, and they can
readily be backed up and preserved for the long term. Soft-
ware relying on local files also has the potential to be very
fast. However, accessing files from multiple devices is trick-
ier. It is possible to transfer a file across devices using various
technologies:

• Sending it back and forth by email;
• Passing a USB drive back and forth;
• Via a distributed file system such as aNetwork-Attached
Storage (NAS) server, NFS, FTP, or rsync;

• Using a cloud file storage service like Dropbox, Google
Drive, or OneDrive (see Section 3.1.3);

• Using a version control system such as Git (see Sec-
tion 3.1.4).

Of these, email attachments are probably the most com-
mon sharing mechanism, especially among users who are
not technical experts. Attachments are easy to understand
and trustworthy. Once you have a copy of a document, it
does not spontaneously change: if you view an email six
months later, the attachments are still there in their origi-
nal form. Unlike a web app, an attachment can be opened
without any additional login process.

The weakest point of email attachments is collaboration.
Generally, only one person at a time can make changes to
a file, otherwise a difficult manual merge is required. File
versioning quickly becomes messy: a back-and-forth email

thread with attachments often leads to filenames such as
Budget draft 2 (Jane’s version) final final 3.xls.

Nevertheless, for apps that want to incorporate local-first
ideas, a good starting point is to offer an export feature
that produces a widely-supported file format (e.g. plain text,
PDF, PNG, or JPEG) and allows it to be shared e.g. via email
attachment, Slack, or WhatsApp.

3.1.2 Web Apps: Google Docs, Trello, Figma,
Pinterest, etc.

At the opposite end of the spectrum are pure web apps,
where the user’s local software (web browser or mobile app)
is a thin client and the data storage resides on a server. The
server typically uses a large-scale database in which the
data of millions of users are all mixed together in one giant
collection.

Web apps have set the standard for real-time collaboration.
As a user you can trust that when you open a document on
any device, you are seeing the most current and up-to-date
version. This is so overwhelmingly useful for team work
that these applications have become dominant. Even tradi-
tionally local-only software like Microsoft Office is making
the transition to cloud services, with Office 365 eclipsing
locally-installed Office as of 2017 [131].

With the rise of remote work and distributed teams [109],
real-time collaborative productivity tools are becoming even
more important. Ten users on a team video call can bring

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

up the same Trello board and each make edits on their own
computer while simultaneously seeing what other users are
doing.

The flip side to this is a total loss of ownership and control:
the data on the server is what counts, and any data on your
client device is unimportant — it is merely a cache. Most web
apps have little or no support for offline working: if your
network hiccups for even a moment, you are locked out of
your work mid-sentence (see Figure 8).
A few of the best web apps hide the latency of server

communication using JavaScript [92], and try to provide
limited offline support (for example, the Google Docs offline
plugin [66]). However, these efforts appear retrofitted to an
application architecture that is fundamentally centered on
synchronous interaction with a server. Users report mixed
results when trying to work offline (Figure 9).
Some web apps, for example Milanote and Figma, offer

installable desktop clients that are essentially repackaged
web browsers (see Figure 10). If you try to use these clients to
access your work while your network is intermittent, while
the vendor’s servers are experiencing an outage, or after the
vendor has been acquired and shut down, it becomes clear
that your work was never truly yours.

3.1.3 Dropbox, Google Drive, Box, OneDrive, etc.
Cloud-based file sync products like Dropbox [50], Google
Drive [71], Box [33], or OneDrive [98] make files available on
multiple devices. On desktop operating systems (Windows,
Linux, Mac OS) these tools work by watching a designated
folder on the local file system. Any software on your com-
puter can read and write files in this folder, and whenever a
file is changed on one computer, it is automatically copied
to all of your other computers.
As these tools use the local filesystem, they have many

attractive properties: access to local files is fast, and working
offline is no problem (files edited offline are synced the next
time an Internet connection is available). If the sync service
were shut down, your files would still remain unharmed on
your local disk, and it would be easy to switch to a different
syncing service. If your computer’s hard drive fails, you can
restore your work simply by installing the app and waiting
for it to sync. This provides good longevity and control over
your data.

However, onmobile platforms (iOS andAndroid), Dropbox
and its cousins use a completely different model. The mobile
apps do not synchronize an entire folder — instead, they are
thin clients that fetch your data from a server one file at a
time, and by default they do not work offline (Figure 11).
There is a “Make available offline” option [51], but you need
to remember to invoke it ahead of going offline, it is clumsy,
and only works when the app is open. The Dropbox API [49]
is also very server-centric.

The weakest point of file sync products is the lack of real-
time collaboration: if the same file is edited on two different

devices, the result is a conflict that needs to be merged man-
ually, as discussed in Section 2.4. The fact that these tools
synchronize files in any format is both a strength (compat-
ibility with any application) and a weakness (inability to
perform format-specific merges).

3.1.4 Git and GitHub
Git and GitHub are primarily used by software engineers
to collaborate on source code. They are perhaps the closest
thing we have to a true local-first software package: com-
pared to server-centric version control systems such as Sub-
version, Git works fully offline, it is fast, it gives full control
to users, and it is suitable for long-term preservation of data.
This is the case because a Git repository on your local filesys-
tem is a primary copy of the data, and is not subordinate to
any server.9

A repository hosting service like GitHub enables collabo-
ration around Git repositories, accessing data from multiple
devices, as well as providing a backup and archival location.
Support for mobile devices is currently weak, althoughWork-
ing Copy [30] is a promising Git client for iOS. GitHub stores
repositories unencrypted; if stronger privacy is required, it
is possible for you to run your own repository server.
We think the Git model points the way toward a future

for local-first software. However, as it currently stands, Git
has two major weaknesses:

1. Git is excellent for asynchronous collaboration, espe-
cially using pull requests (Figure 6, [61]), which take
a coarse-grained set of changes and allow them to be
discussed and amended before merging them into the
shared master branch. But Git has no capability for
real-time, fine-grained collaboration, such as the auto-
matic, instantaneous merging that occurs in tools like
Google Docs, Trello, and Figma.

2. Git is highly optimized for code and similar line-based
text files; other file formats are treated as binary blobs
that cannot meaningfully be edited or merged. Despite
GitHub’s efforts to display and compare images [94],
prose [34], and CAD files [117], non-textual file for-
mats remain second-class in Git.

It’s interesting to note that most software engineers have
been reluctant to embrace cloud software for their editors,
IDEs, runtime environments, and build tools. In theory, we
might expect this demographic of sophisticated users to em-
brace newer technologies sooner than other types of users.
But if you ask an engineer why they don’t use a cloud-based
editor like Cloud9 [15] or Repl.it [103], or a runtime envi-
ronment like Colaboratory [63], the answers will usually
9We focus on Git/GitHub here as the most successful examples, but these
lessons also apply to other distributed revision control tools like Mercurial
or Darcs, and other repository hosting services such as GitLab or Bitbucket.
In principle it is possible to collaborate without a repository service, e.g.
by sending patch files by email [48], but the majority of Git users rely on
GitHub.

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 8. If Google Docs detects that it is offline, it blocks editing of the document.

Figure 9. A negative user review of the Google Docs offline extension.

Figure 10. The Figma [56] desktop client in action.

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

Figure 11. Users of the Dropbox mobile app spend a lot of time looking at spinners, a stark contrast to the at-your-fingertips
feeling of the Dropbox desktop product.

include “it’s too slow” or “I don’t trust it” or “I want my code
on my local system.” These sentiments seem to reflect some
of the same motivations as local-first software. If we as devel-
opers want these things for ourselves and our work, perhaps
we might imagine that other types of creative professionals
would want these same qualities for their own work.

3.2 Developer Infrastructure for Building Apps
Now that we have examined the user experience of a range
of applications through the lens of the local-first ideals, let’s
switch mindsets to that of an application developer. If you
are creating an app and want to offer users some or all of the
local-first experience, what are your options for data storage
and synchronization infrastructure?

3.2.1 Web App (Thin Client)
A web app in its purest form is usually a Rails, Django, PHP,
or Node.js program running on a server, storing its data in a
SQL or NoSQL database, and serving web pages over HTTPS.
All of the data is on the server, and the user’s web browser
is only a thin client.
This architecture offers many benefits: zero installation

(just visit a URL), and nothing for the user to manage, as

all data is stored and managed in one place by the engineer-
ing and DevOps professionals who deploy the application.
Users can access the application from all of their devices,
and colleagues can easily collaborate by logging in to the
same application. JavaScript frameworks such as Meteor [97]
and ShareDB [118], and services such as Pusher and Ably,
make it easier to add real-time collaboration features to web
applications, building on top of lower-level protocols such
as WebSocket [100].
On the other hand, a web app that needs to perform a

request to a server for every user action is going to be slow.
It is possible to hide the round-trip times in some cases by us-
ing client-side JavaScript [92], but these approaches quickly
break down if the user’s internet connection is unstable.

Despite many efforts to make web browsers more offline-
friendly (manifests [101], localStorage [102], service workers
[59], and Progressive Web Apps [67], among others [21]),
the architecture of web apps remains fundamentally server-
centric. Offline support is an afterthought in most web apps,
and the result is accordingly fragile. In many web browsers,
if the user clears their cookies, all data in local storage is
also deleted [121]; while this is not a problem for a cache,
it makes the browser’s local storage unsuitable for storing
data of any long-term importance.

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Web apps also score poorly in terms of longevity, privacy,
and user control. It is possible to improve these properties
if the web app is open source and users are willing to self-
host their own instances of the server. However, we believe
that self-hosting is not a viable option for the vast major-
ity of users who do not want to become system adminis-
trators [111]; moreover, most web apps are closed source,
ruling out this option entirely.
All in all, we speculate that web apps will never be able

to provide all the local-first properties we are looking for,
due to the fundamental thin-client nature of the platform.
By choosing to build a web app, you are choosing the path of
data belonging to you and your company, not to your users.

3.2.2 Mobile App with Local Storage (Thick Client)
iOS and Android apps are locally installed software, with the
entire app binary downloaded and installed before the app
is run. Many apps are nevertheless thin clients, similarly to
web apps, which require a server in order to function (for
example, Twitter, Yelp, or Facebook). Without a reliable Inter-
net connection, these apps give you spinners, error messages,
and unexpected behavior.

However, there is another category of mobile apps that are
more in line with the local-first ideals. These apps store data
on the local device in the first instance, using a persistence
layer like SQLite [12], Core Data [19], or just plain files. Some
of these (such as Clue [2] or Things [44]) started life as a
single-user app without any server, and then added a cloud
backend later, as a way to sync between devices or share
data with other users.
These thick-client apps have the advantage of being fast

and working offline, because the server sync happens in the
background. They generally continue working if the server is
shut down. The degree to which they offer privacy and user
control over data varies depending on the app in question.
Things get more difficult if the data may be modified on

multiple devices or by multiple collaborating users. The de-
velopers of mobile apps are generally experts in end-user
app development, not in distributed systems. We have seen
multiple app development teams writing their own ad-hoc
diffing, merging, and conflict resolution algorithms, and the
resulting data sync solutions are often unreliable and brittle.
A more specialized storage backend, as discussed in the next
section, can help.

3.2.3 Backend-as-a-Service: Firebase, CloudKit,
Realm

Firebase [64] is the most successful of mobile backend-as-a-
service options. It is essentially a local on-device database
combined with a cloud database service and data synchro-
nization between the two. Firebase allows sharing of data

across multiple devices, and it supports offline use [65]. How-
ever, as a proprietary hosted service, we give it a low score
for privacy and longevity.10
Firebase offers a great experience for you, the developer:

you can view, edit, and delete data in a free-form way in the
Firebase console (Figure 12). But the user does not have a
comparable way of accessing, manipulating and managing
their data, leaving the user with little ownership and control.
Apple’s CloudKit [18] offers a Firebase-like experience

for apps willing to limit themselves to the iOS and Mac
platforms. It is a key-value store with syncing, good offline
capabilities, and it has the added benefit of being built into
the platform (thereby sidestepping the clumsiness of users
having to create an account and log in). It’s a great choice
for indie iOS developers and is used to good effect by tools
like Ulysses (see Figure 13, [127]), Bear [114], Overcast [107],
and many more.
Another project in this vein is Realm [125]. This persis-

tence library for iOS gained popularity compared to Core
Data due to its cleaner API. The client-side library for lo-
cal persistence is called Realm Database, while the associ-
ated Firebase-like backend service is called Realm Object
Server [126]. Notably, the object server is open source and
self-hostable, which reduces the risk of being locked in to a
service that might one day disappear.
Mobile apps that treat the on-device data as the primary

copy (or at least more than a disposable cache), and use sync
services like Firebase or iCloud, get us a good bit of the way
toward local-first software.

3.2.4 CouchDB
CouchDB [17] is a database that is notable for pioneering a
multi-master replication approach: several machines each
have a fully-fledged copy of the database, each replica can
independently make changes to the data, and any pair of
replicas can synchronize with each other to exchange the
latest changes. CouchDB is designed for use on servers;
Cloudant [74] provides a hosted version; PouchDB [11] and
Hoodie [6] are sibling projects that use the same sync proto-
col but are designed to run on end-user devices.
Philosophically, CouchDB is closely aligned to the local-

first principles, as evidenced in particular by the CouchDB
book [16], which provides an excellent introduction to rel-
evant topics such as distributed consistency, replication,
change notifications, and multiversion concurrency control.

While CouchDB/PouchDB allow multiple devices to con-
currently make changes to a database, these changes lead to
conflicts that need to be explicitly resolved by application
code. This conflict resolution code is difficult to write cor-
rectly, making CouchDB impractical for applications with
10Another popular backend-as-a-service was Parse [10], but it was acquired
and then shut down by Facebook in 2017 [36]. Apps relying on it were
forced to move to other backend services, underlining the importance of
longevity.

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

Figure 12. The Firebase console: great for developers, off-limits for the end user.

Figure 13. With one checkbox, Ulysses [127] syncs work across all of the user’s connected devices, thanks to its use of
CloudKit.

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

{todos: [

{title: "Water plants",

done: false}

]}

state.todos.push(

{title: "Buy milk",

done: false});

{todos: [

{title: "Water plants",

done: false},

{title: "Buy milk",

done: false}

]}

{todos: [

{title: "Water plants",

done: true},

{title: "Buy milk",

done: false}

]}

{todos: [

{title: "Water plants",

done: false}

]}

state.todos[0]
.done = true;

{todos: [

{title: "Water plants",

done: true}

]}

{todos: [

{title: "Water plants",

done: true},

{title: "Buy milk",

done: false}

]}

ne
tw

or
k
co
m
m
un

ic
at
io
n

Device 1:

Device 2:

Figure 14. Two devices initially have the same to-do list. On device 1, a new item is added to the list using the .push()
method, which appends a new item to the end of a list. Concurrently, the first item is marked as done on device 2. After the
two devices communicate, the CRDT automatically merges the states so that both changes take effect.

very fine-grained collaboration, like in Google Docs, where
every keystroke is potentially an individual change.
In practice, the CouchDB model has not been widely

adopted [42]. Various reasons have been cited for this: scala-
bility problemswhen a separate database per user is required;
difficulty embedding the JavaScript client in native apps on
iOS and Android; the problem of conflict resolution; the
unfamiliar MapReduce model for performing queries; and
more. All in all, while we agree with much of the philosophy
behind CouchDB, we feel that the implementation has not
been able to realize the local-first vision in practice.

4 Towards a Better Future
As we have shown, none of the existing data layers for appli-
cation development fully satisfy the local-first ideals. Thus,
three years ago, our lab [8] set out to search for a solution
that meets all seven ideals.

We have found some technologies that appear to be promis-
ing foundations for local-first ideals. Most notably are the
family of distributed systems algorithms called Conflict-free
Replicated Data Types (CRDTs).

4.1 CRDTs as a Foundational Technology
CRDTs emerged from distributed systems research in 2011
[113]. They are general-purpose data structures, like hash
maps and lists, but the special thing about them is that they
are multi-user from the ground up.
Every application needs some data structures to store its

document state. For example, if your application is a text
editor, the core data structure is the array of characters that
make up the document. If your application is a spreadsheet,

the data structure is a matrix of cells containing text, num-
bers, or formulas referencing other cells. If it is a vector
graphics application, the data structure is a tree of graphi-
cal objects such as text objects, rectangles, lines, and other
shapes.
If you are building a single-user application, you would

maintain those data structures in memory using model ob-
jects, hash maps, lists, records/structs and the like. If you
are building a collaborative multi-user application, you can
swap out those data structures for CRDTs.
Figure 14 shows an example of a to-do list application

backed by a CRDT with a JSON data model [90]. Users can
view and modify the application state on their local device,
even while offline. The CRDT keeps track of any changes
that are made, and syncs the changes with other devices in
the background when a network connection is available.
If the state was concurrently modified on different de-

vices, the CRDT merges those changes. For example, if users
concurrently add new items to the to-do list on different
devices, the merged state contains all of the added items in
a consistent order. Concurrent changes to different objects
can also be merged easily. The only type of change that a
CRDT cannot automatically resolve is when multiple users
concurrently update the same property of the same object;
in this case, the CRDT keeps track of the conflicting values,
and leaves it to be resolved by the application or the user.

Thus, CRDTs have some similarity to version control sys-
tems like Git, except that they operate on richer data types
than text files. CRDTs can sync their state via any com-
munication channel (e.g. via a server, over a peer-to-peer
connection, by Bluetooth between local devices, or even on

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

a USB stick). The changes tracked by a CRDT can be as
small as a single keystroke, enabling Google Docs-style real-
time collaboration. But you could also collect a larger set
of changes and send them to collaborators as a batch, more
like a pull request in Git. Because the data structures are
general-purpose, we can develop general-purpose tools for
storage, communication, and management of CRDTs, saving
us from having to re-implement those things in every single
app.

For a more technical introduction to CRDTs we suggest:
• Alexei Baboulevitch’s Data Laced with History [25]
• Martin Kleppmann’s Convergence vs Consensus [89]
• Shapiro et al.’s comprehensive survey [112]
• Attiya et al.’s formal specification of collaborative text
editing [24]

• Gomes et al.’s formal verification of CRDTs [62]
Ink & Switch has developed an open-source, JavaScript

CRDT implementation called Automerge [1]. It is based on
our earlier research on JSON CRDTs [90]. We have then
combined Automerge with the Dat networking stack [46] to
form Hypermerge [7]. We do not claim that these libraries
fully realize local-first ideals — more work is still required.

However, based on our experience with them, we believe
that CRDTs have the potential to be a foundation for a new
generation of software. Just as packet switching was an en-
abling technology for the Internet and the web, or as capac-
itive touchscreens were an enabling technology for smart-
phones, so we think CRDTs may be the foundation for col-
laborative software that gives users full ownership of their
data.

4.2 Ink & Switch Prototypes
While academic research has made good progress designing
the algorithms for CRDTs and verifying their theoretical
correctness, there is so far relatively little industrial use of
these technologies. Moreover, most industrial CRDT use has
been in server-centric computing,11 but we believe this tech-
nology has significant potential in client-side applications
for creative work.

This was the motivation for our lab [8] to embark on a se-
ries of experimental prototypes with collaborative, local-first
applications built on CRDTs. Each prototype offered an end-
user experience modeled after an existing app for creative
work such as Trello, Figma, or Milanote. These experiments
explored questions in three areas:

Technology viability. How close are CRDTs to being
usable for working software?What do we need for net-
work communication, or installation of the software
to begin with?

11Server-centric systems using CRDTs include Azure Cosmos DB [115],
Redis [27], Riak [96], Weave Mesh [32], SoundCloud’s Roshi [31], and Face-
book’s OpenR [54]. However, we are most interested in the use of CRDTs
on end-user devices.

User experience. How does local-first software feel to
use? Can we get a seamless Google Docs-like real-time
collaboration experience without an authoritative cen-
tralized server? How about a Git-like, offline-friendly,
asynchronous collaboration experience for data types
other than source code? And generally, how are user
interfaces different without a centralized server?

Developer experience. For an app developer, how does
the use of a CRDT-based data layer compare to existing
storage layers like a SQL database, a filesystem, or Core
Data? Is a distributed system harder to write software
for? Do we need schemas and type checking? What
will developers use for debugging and introspection
of their application’s data layer?

We built three prototypes using Electron [3], JavaScript,
and React [53]. This gave us the rapid development capability
of web technologies while also giving our users a piece of
software they can download and install, which we discovered
is an important part of the local-first feeling of ownership.

4.2.1 Kanban Board
Trellis (Figure 15, [79]) is a Kanban board modeled after
the popular Trello project management software [22]. On
this project we experimented with WebRTC [13] for the
network communication layer. On the user experience side,
we designed a rudimentary “change history” inspired by Git
and Google Docs’ “See New Changes” [68] that allows users
to see the operations on their Kanban board. This includes
stepping back in time to view earlier states of the document.

For more information, there is a Trellis demo video [134],
and releases are available for download [80].

4.2.2 Collaborative Drawing
PixelPusher (shown in Figure 16) is a collaborative drawing
program [75], bringing a Figma-like real-time experience
to Javier Valencia’s Pixel Art to CSS [129]. On this project
we experimented with network communication via peer-
to-peer libraries from the Dat project [46]. User experience
experiments include URLs for document sharing, a visual
branch/merge facility inspired by Git, a conflict-resolution
mechanism that highlights conflicted pixels in red, and basic
user identity via user-drawn avatars.
More details appear in the project report [130], and re-

leases are available for download [76].

4.2.3 Media Canvas
PushPin (shown in Figure 17) is a mixed media canvas work-
space [77] similar to Miro [9] or Milanote [99]. As our third
project built on Automerge, it’s the most fully-realized of
these three. Real use by our team and external test users put
more strain on the underlying data layer.

PushPin explored nested and connected shared documents,
varied renderers for CRDT documents, a more advanced

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 15. Trellis offers a Trello-like experience with local-first software. The change history on the right reflects changes
made by all users active in the document.

Figure 16. Drawing together in real-time. A URL at the top offers a quick way to share this document with other users. The
“Versions” panel on the right shows all branches of the current document. The arrow buttons offer instant merging between
branches.

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

Figure 17. PushPin’s canvas mixes text, images, discussion threads, and web links. Users see each other via presence avatars
in the toolbar, and navigate between their own documents using the URL bar.

identity system that included an “outbox” model for sharing,
and support for sharing ephemeral data such as selection
highlights.
There is a demo video of PushPin [39], and releases are

available for download [78].

4.2.4 Findings
Our goal in developing the three prototypes Trellis, Pixel-
Pusher and PushPin was to evaluate the technology viability,
user experience, and developer experience of local-first soft-
ware and CRDTs. We tested the prototypes by regularly
using them within the development team (consisting of five
members), reflecting critically on our experiences develop-
ing the software, and by conducting individual usability
tests with approximately ten external users. The external
users included professional designers, productmanagers, and
software engineers. We did not follow a formal evaluation
methodology, but rather took an exploratory approach to
discovering the strengths and weaknesses of our prototypes.
In this section we outline the lessons we learned from

building and using these prototypes.While these findings are
somewhat subjective, we believe they nevertheless contain
valuable insights, because we have gone further than other
projects down the path towards production-ready local-first
applications based on CRDTs.

CRDT technology works. From the beginning we were
pleasantly surprised by the reliability of Automerge. App
developers on our team were able to integrate the library
with relative ease, and the automatic merging of data was
almost always straightforward and seamless.

The user experience with offline work is splendid. The
process of going offline, continuing to work for as long as
you want, and then reconnecting to merge changes with col-
leagues worked well. While other applications on the system
threw up errors (“offline! warning!”) and blocked the user
from working, the local-first prototypes function normally
regardless of network status. Unlike browser-based systems,
there is never any anxiety about whether the application
will work or the data will be there when the user needs it.
This gives the user a feeling of ownership over their tools
and their work, just as we had hoped.

Developer experience is viable when combined with
Functional Reactive Programming (FRP [45]). The FRP
model of React fits well with CRDTs. A data layer based on
CRDTs means the user’s document is simultaneously getting
updates from the local user (e.g. as they type into a text
document) but also from the network (as other users and
other devices make changes to the document).
Because the FRP model reliably synchronizes the visible

state of the application with the underlying state of the

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

shared document, the developer is freed from the tedious
work of tracking changes arriving from other users and re-
conciling them with the current view. Also, by ensuring all
changes to the underlying state are made through a single
function (a “reducer” [14]), it’s easy to ensure that all relevant
local changes are sent to other users.
The result of this model was that all of our prototypes

realized real-time collaboration and full offline capability
with little effort from the application developer. This is a sig-
nificant benefit as it allows app developers to focus on their
application rather than the challenges of data distribution.

Conflicts are not as significant a problem as we feared.
We are often asked about the effectiveness of automatic
merging, and many people assume that application-specific
conflict resolution mechanisms are required. However, we
found that users surprisingly rarely encounter conflicts in
their work when collaborating with others, and that generic
resolution mechanisms work well. The reasons for this are:

1. Automerge tracks changes at a fine-grained level, and
takes datatype semantics into account. For example, if
two users concurrently insert items at the same posi-
tion into an array, Automerge combines these changes
by positioning the two new items in a deterministic
order. In contrast, a textual version control system like
Git would treat this situation as a conflict requiring
manual resolution.

2. Users have an intuitive sense of human collaboration
and avoid creating conflicts with their collaborators.
For example, when users are collaboratively editing
an article, they may agree in advance who will be
working on which section for a period of time, and
avoid concurrently modifying the same section.

When different users concurrently modify different parts of
the document state, Automerge will merge these changes
cleanly without difficulty. With the Kanban app, for exam-
ple, one user could post a comment on a card and another
could move it to another column, and the merged result will
reflect both of these changes. Conflicts arise only if users
concurrently modify the same property of the same object:
for example, if two users concurrently change the position of
the same image object on a canvas. In such cases, it is often
arbitrary how they are resolved and satisfactory either way.
Automerge’s data structures come with a small set of de-

fault resolution policies for concurrent changes. In principle,
one might expect different applications to require different
merge semantics. However, in all the prototypes we devel-
oped, we found that the default merge semantics to be suffi-
cient, and we have so far not identified any case requiring
customised semantics. We hypothesise that this is the case
generally, and we hope that future research will be able to
further test this hypothesis.

Visualizing document history is important. In a distri-
buted collaborative system another user can deliver any num-
ber of changes to you at any moment. Unlike centralized
systems, where servers mediate change, local-first applica-
tions need to find their own solutions to these problems.
Without the right tools, it can be difficult to understand how
a document came to look the way it does, what versions of
the document exist, or where contributions came from.

In the Trellis project we experimented with a “time travel”
interface, allowing a user to move back in time to see earlier
states of a merged document, and automatically highlighting
recently changed elements as changes are received from
other users. The ability to traverse a potentially complex
merged document history in a linear fashion helps to provide
context and could become a universal tool for understanding
collaboration.

URLs are a good mechanism for sharing. We experi-
mentedwith a number of mechanisms for sharing documents
with other users, and found that a URLmodel, inspired by the
web, makes the most sense to users and developers. URLs can
be copied and pasted, and shared via communication chan-
nels such as email or chat. Access permissions for documents
beyond secret URLs remain an open research question.

Peer-to-peer systems are never fully “online” or “off-
line” and it can behard to reason about howdatamoves
in them. A traditional centralized system is generally “up”
or “down,” states defined by each client by their ability to
maintain a steady network connection to the server. The
server determines the truth of a given piece of data.
In a decentralized system, we can have a kaleidoscopic

complexity to our data. Any user may have a different per-
spective on what data they either have, choose to share, or
accept. For example, one user’s edits to a document might
be on their laptop on an airplane; when the plane lands and
the computer reconnects, those changes are distributed to
other users. Other users might choose to accept all, some, or
none of those changes to their version of the document.

Different versions of a document can lead to confusion. As
with a Git repository, what a particular user sees in the “mas-
ter” branch is a function of the last time they communicated
with other users. Newly arriving changes might unexpect-
edly modify parts of the document you are working on, but
manually merging every change from every user is tedious.
Decentralized documents enable users to be in control over
their own data, but further study is needed to understand
what this means in practical user-interface terms.

CRDTs accumulate a large change history, which cre-
ates performance problems. Our team used PushPin for
“real” documents such as sprint planning. Performance and
memory/disk usage quickly became a problem because CRDTs
store all history, including character-by-character text edits.

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

These pile up, but can’t easily be truncated because it’s im-
possible to know when someone might reconnect to your
shared document after six months away and need to merge
changes from that point forward.
We continue to optimize Automerge, but this is a major

area of ongoing work.

Network communication remains an unsolved prob-
lem. CRDT algorithms provide only for the merging of data,
but say nothing about how different users’ edits arrive on
the same physical computer.
In these experiments we tried network communication

via WebRTC [13]; a “sneakernet” implementation of copying
files around with Dropbox and USB keys; possible use of the
IPFS protocols [108]; and eventually settled on the Hypercore
peer-to-peer libraries from Dat [35].
CRDTs do not require a peer-to-peer networking layer;

using a server for communication is fine for CRDTs. However,
to fully realize the longevity goal of local-first software, we
want applications to outlive any backend services managed
by their vendors, so a decentralized solution is the logical
end goal.
The use of P2P technologies in our prototypes yielded

mixed results. On one hand, these technologies are nowhere
near production-ready: NAT traversal [110], in particular, is
unreliable depending on the particular router or network
topology where the user is currently connected. But the
promise suggested by P2P protocols and the Decentralized
Web community [82] is substantial. Live collaboration be-
tween computers without Internet access feels like magic in
a world that has come to depend on centralized APIs.

Cloud servers still have their place for discovery, back-
up, and burst compute. A real-time collaborative proto-
type like PushPin lets users share their documents with other
users without an intermediating server. This is excellent for
privacy and ownership, but can result in situations where a
user shares a document, and then closes their laptop lid be-
fore the other user has connected. If the users are not online
at the same time, they cannot connect to each other.

Servers thus have a role to play in the local-first world —
not as central authorities, but as “cloud peers” that support
client applications without being on the critical path. For
example, a cloud peer that stores a copy of the document,
and forwards it to other peers when they come online, could
solve the closed-laptop problem above. Hashbase [29] is an
example of a cloud peer and bridge for Dat [46] and Beaker
Browser [28].

Similarly, cloud peers could be:

• an archival/backup location (especially for phones or
other devices with limited storage);

• a bridge to traditional server APIs (such as weather
forecasts or a stock tickers);

• a provider of burst computing resources (like render-
ing a video using a powerful GPU).

The key difference between traditional systems and local-
first systems is not an absence of servers, but a change in
their responsibilities: they are in a supporting role, not the
source of truth.

4.3 How You Can Help
These experiments suggest that local-first software is possi-
ble. Collaboration and ownership are not at odds with each
other — we can get the best of both worlds, and users can
benefit.
However, the underlying technologies are still a work

in progress. They are good for developing prototypes, and
we hope that they will evolve and stabilize in the coming
years, but realistically, it is not yet advisable to replace a
proven product like Firebase with an experimental project
like Automerge in a production setting today.
If you believe in a local-first future, as we do, what can

you (and all of us in the technology field) do to move us
toward it? Here are some suggestions.

4.3.1 For Distributed Systems and Programming
Languages Researchers

Local-first software has benefited tremendously from recent
research into distributed systems, including CRDTs and peer-
to-peer technologies. The current research community is
making excellent progress in improving the performance
and power of CRDTs and we eagerly await further results
from that work. Still, there are interesting opportunities for
further work.
Most CRDT research operates in a model where all col-

laborators immediately apply their edits to a single version
of a document. However, practical local-first applications
require more flexibility: users must have the freedom to re-
ject edits made by another collaborator, or to make private
changes to a version of the document that is not shared with
others. A user might want to apply changes speculatively or
reformat their change history. These concepts are well under-
stood in the distributed source control world as “branches,”
“forks,” “rebasing,” and so on. There is little work to date
on understanding the algorithms and programming mod-
els for collaboration in situations where multiple document
versions and branches exist side-by-side.

We see further interesting problems around types, schema
migrations, and compatibility. Different collaborators may be
using different versions of an application, potentially with
different features. As there is no central database server,
there is no authoritative “current” schema for the data. How
can we write software so that varying application versions
can safely interoperate, even as data formats evolve? This
question has analogues in cloud-based API design, but a
local-first setting provides additional challenges.

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 18. The “railroad track” model, as used in GitX [84] for visualizing the structure of source code history in a Git
repository.

4.3.2 For Human-Computer Interaction (HCI)
Researchers

For centralized systems, there are ample examples in the
field today of applications that indicate their “sync” state
with a server. Decentralized systems have a whole host of
interesting new opportunities to explore user interface chal-
lenges.
We hope researchers will consider how to communicate

online and offline states, or available and unavailable states
for systems where any other user may hold a different copy
of data. How should we think about connectivity when ev-
eryone is a peer? What does it mean to be “online” when we
can collaborate directly with other nodes without access to
the wider Internet?

When every document can develop a complex version his-
tory, simply through daily operation, an acute problem arises:
how do we communicate this version history to users? Exist-
ing visualization methods are often confusing (see Figure 18).
How should users think about versioning, share and accept
changes, and understand how their documents came to be a
certain way when there is no central source of truth? Today
there are two mainstream models for change management:
a source-code model of diffs and patches (Figure 6), and a
Google Docs model of suggestions and comments (Figure 5).
Are these the best we can do? How do we generalize these
ideas to data formats that are not text? We are eager to see
what can be discovered.

While centralized systems rely heavily on access control
and permissions, the same concepts do not directly apply in
a local-first context. For example, any user who has a copy
of some data cannot be prevented from locally modifying it;
however, other users may choose whether or not to subscribe

to those changes. How should users think about sharing,
permissions, and feedback? If we can’t remove documents
from others’ computers, what does it mean to “stop sharing”
with someone?

We believe that the assumption of centralization is deeply
ingrained in our user experiences today, and we are only
beginning to discover the consequences of changing that
assumption. We hope these open questions will inspire re-
searchers to explore what we believe is an untapped area.

4.3.3 For Practitioners
If you’re a software engineer, designer, product manager, or
independent app developer working on production-ready
software today, how can you help? We suggest taking in-
cremental steps toward a local-first future. Start by scoring
your app according to the ideals in Section 2. Then here are
some strategies for improving each area:

Fast. Aggressive caching and downloading resources
ahead of time can be a way to prevent the user from
seeing spinners when they open your app or a docu-
ment they previously had open. Trust the local cache
by default instead of making the user wait for a net-
work fetch.

Multi-device. Syncing infrastructure like Firebase and
iCloud make multi-device support relatively painless,
although they do introduce longevity and privacy con-
cerns. Self-hosted infrastructure like Realm Object
Server [124] provides an alternative trade-off.

Offline. In the web world, Progressive Web Apps [67]
offer features like Service Workers and app manifests

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

that can help. In the mobile world, be aware of Web-
Kit frames [20] and other network-dependent com-
ponents. Test your app by turning off your WiFi, or
using traffic shapers such as the Chrome Dev Tools
network condition simulator [86] or the iOS network
link conditioner [93].

Collaboration. Besides CRDTs, the more established
technology for real-time collaboration is Operational
Transformation [122] (OT), as implemented e.g. in
ShareDB [118].

Longevity. Make sure your software can easily export
to flattened, standard formats like JSON or PDF. For
example: mass export such as Google Takeout [70];
continuous backup into stable file formats such as in
GoodNotes [38]; and JSON download of documents
such as in Trello [23].

Privacy. Cloud apps are fundamentally non-private, with
employees of the company and governments able to
peek at user data at any time. But for mobile or desktop
applications, try to make clear to users when the data
is stored only on their device versus being transmitted
to a backend.

User control. Can users easily back up, duplicate, or
delete some or all of their documents within your ap-
plication? Often this involves re-implementing all the
basic filesystem operations, as Google Docs has done
with Google Drive.

4.3.4 Call for Startups
If you are an entrepreneur interested in building developer
infrastructure, all of the above suggests an interestingmarket
opportunity: “Firebase for CRDTs.”

Such a startup would need to offer a great developer expe-
rience and a local persistence library (something like SQLite
or Realm). It would need to be available for mobile platforms
(iOS, Android), native desktop (Windows, Mac, Linux), and
web technologies (Electron, Progressive Web Apps).

User control, privacy, multi-device support, and collabo-
ration would all be baked in. Application developers could
focus on building their app, knowing that the easiest im-
plementation path would also given them top marks on the
local-first scorecard. As litmus test to see if you have suc-
ceeded, we suggest: do all your customers’ apps continue
working in perpetuity, even if all servers are shut down?

We believe the “Firebase for CRDTs” opportunity will be
huge as CRDTs come of age. We’d like to hear from you if
you’re working on this.

5 Conclusions
Computers are one of the most important creative tools
mankind has ever produced. Software has become the con-
duit through which our work is done and the repository in
which that work resides.

In the pursuit of better tools we moved many applications
to the cloud. Cloud software is in many regards superior to
“old-fashioned” software: it offers collaborative, always-up-
to-date applications, accessible from anywhere in the world.
We no longer worry about what software version we are
running, or what machine a file lives on.

However, in the cloud, ownership of data is vested in the
servers, not the users, and so we became borrowers of our
own data. The documents created in cloud apps are destined
to disappear when the creators of those services cease to
maintain them. Cloud services defy long-term preservation.
No Wayback Machine can restore a sunsetted web appli-
cation. The Internet Archive cannot preserve your Google
Docs.

In this article we explored a newway forward for software
of the future. We have shown that it is possible for users to
retain ownership and control of their data, while also benefit-
ing from the features we associate with the cloud: seamless
collaboration and access from anywhere. It is possible to get
the best of both worlds.

But more work is needed to realize the local-first approach
in practice. Application developers can take incremental
steps, such as improving offline support and making better
use of on-device storage. Researchers can continue improv-
ing the algorithms, programming models, and user interfaces
for local-first software. Entrepreneurs can develop founda-
tional technologies such as CRDTs and peer-to-peer network-
ing into mature products able to power the next generation
of applications.
Today it is easy to create a web application in which the

server takes ownership of all the data. But it is too hard to
build collaborative software that respects users’ ownership
and agency. In order to shift the balance, we need to improve
the tools for developing local-first software. We hope that
you will join us.

Acknowledgments
Martin Kleppmann is supported by a grant from The Boeing
Company. Thank you to our collaborators at Ink & Switch
who worked on the prototypes discussed in Section 4.2: Julia
Roggatz, Orion Henry, Roshan Choxi, Jeff Peterson, Jim Pick,
and Ignatius Gilfedder. Thank you also to Heidi Howard, to
our shepherd Roly Perera, and to the anonymous reviewers
for helping improve this article.

References
[1] [n.d.]. Automerge. https://github.com/automerge/automerge
[2] [n.d.]. Clue. https://helloclue.com
[3] [n.d.]. Electron: Build cross platform desktop apps with JavaScript,

HTML, and CSS. https://electronjs.org
[4] [n.d.]. English Amiga Board. http://eab.abime.net/
[5] [n.d.]. File:Early writing tablet recording the allocation of

beer.jpg. https://commons.wikimedia.org/wiki/File:Early_writing_
tablet_recording_the_allocation_of_beer.jpg

[6] [n.d.]. Hoodie. http://hood.ie/

https://github.com/automerge/automerge
https://helloclue.com
https://electronjs.org
http://eab.abime.net/
https://commons.wikimedia.org/wiki/File:Early_writing_tablet_recording_the_allocation_of_beer.jpg
https://commons.wikimedia.org/wiki/File:Early_writing_tablet_recording_the_allocation_of_beer.jpg
http://hood.ie/

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

[7] [n.d.]. Hypermerge. https://github.com/automerge/hypermerge
[8] [n.d.]. Ink & Switch. https://www.inkandswitch.com
[9] [n.d.]. Miro. https://miro.com
[10] [n.d.]. Parse. https://parseplatform.org
[11] [n.d.]. PouchDB. https://pouchdb.com
[12] [n.d.]. SQLite. https://sqlite.org/
[13] [n.d.]. WebRTC. https://webrtc.org
[14] Dan Abramov. 2018. Redux tutorial: Reducers. https://redux.js.org/

basics/reducers
[15] Amazon Web Services, Inc. [n.d.]. AWS Cloud9. https://aws.amazon.

com/cloud9/
[16] J Chris Anderson, Jan Lehnardt, and Noah Slater. 2010. CouchDB: The

Definitive Guide. O’Reilly Media. http://guide.couchdb.org/
[17] Apache Software Foundation. [n.d.]. Apache CouchDB. https:

//couchdb.apache.org
[18] Apple, Inc. [n.d.]. CloudKit. https://developer.apple.com/icloud/

cloudkit/
[19] Apple, Inc. [n.d.]. Core Data. https://developer.apple.com/

documentation/coredata
[20] Apple, Inc. [n.d.]. WebKit. https://developer.apple.com/

documentation/webkit
[21] Oliver Joseph Ash. 2015. Building an offline page for the-

guardian.com. https://www.theguardian.com/info/developer-blog/
2015/nov/04/building-an-offline-page-for-theguardiancom

[22] Atlassian. [n.d.]. Trello. https://trello.com/
[23] Atlassian. 2019. Exporting data from Trello. https://help.trello.com/

article/747-exporting-data-from-trello-1
[24] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Mor-

rison, Hongseok Yang, and Marek Zawirski. 2016. Specification
and Complexity of Collaborative Text Editing. In ACM Symposium
on Principles of Distributed Computing (PODC). 259–268. https:
//doi.org/10.1145/2933057.2933090

[25] Alexei Baboulevitch. 2018. Data Laced with History: Causal Trees
& Operational CRDTs. http://archagon.net/blog/2018/03/24/data-
laced-with-history/

[26] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M
Hellerstein, and Ion Stoica. 2014. Highly Available Transactions:
Virtues and Limitations. In 40th International Conference on Very
Large Data Bases (VLDB). http://arxiv.org/pdf/1302.0309.pdf

[27] Cihan Biyikoglu. 2018. Under the Hood: Redis CRDTs (Conflict-free
Replicated Data Types). http://lp.redislabs.com/rs/915-NFD-
128/images/WP-RedisLabs-Redis-Conflict-free-Replicated-Data-
Types.pdf

[28] Blue Link Labs Inc. [n.d.]. Beaker. https://beakerbrowser.com/
[29] Blue Link Labs Inc. [n.d.]. Hashbase. https://hashbase.io/
[30] Anders Borum. [n.d.]. Working Copy. https://workingcopyapp.com
[31] Peter Bourgon. 2014. Roshi: a CRDT system for timestamped

events. https://developers.soundcloud.com/blog/roshi-a-crdt-
system-for-timestamped-events

[32] Peter Bourgon and Matthias Radestock. 2016. Effortless Eventual
Consistency with Weave Mesh. In QCon London. https://www.infoq.
com/presentations/weave-mesh

[33] Box, Inc. [n.d.]. Box. https://www.box.com/
[34] Reg Braithwaite. 2014. Rendered Prose Diffs. https://github.blog/

2014-02-14-rendered-prose-diffs/
[35] Mathias Buus. [n.d.]. Hypercore. https://github.com/mafintosh/

hypercore
[36] Andrew Carter and Michael J. Prichard. 2016. Parse Shutdown: What

It Means and What You Can Do. https://willowtreeapps.com/ideas/
parse-shutdown-what-it-means-and-what-you-can-do

[37] Scott Chacon and Ben Straub. 2014. Pro Git (2nd ed.). https://git-
scm.com/book/en/v2

[38] Steven Chan. 2018. How should I backup my documents?
https://support.goodnotes.com/hc/en-us/articles/202168425-How-

should-I-backup-my-documents-
[39] Roshan Choxi. 2018. PushPin video. https://www.youtube.com/

watch?v=Dox3XAoTCyg
[40] Council of Europe. 2010. European Convention on Human Rights.

https://www.echr.coe.int/Documents/Convention_ENG.pdf
[41] Council of Europe. 2018. Guide on Article 9 of the European Con-

vention on Human Rights. https://www.echr.coe.int/Documents/
Guide_Art_9_ENG.pdf

[42] Geoff Cox. 2017. CouchDB, PouchDB and Hoodie as a Stack for
Progressive Web Apps. https://medium.com/offline-camp/couchdb-
pouchdb-and-hoodie-as-a-stack-for-progressive-web-apps-
a6078a985f18

[43] Joseph Cox. 2019. Snapchat Employees Abused Data Access to Spy
on Users. https://www.vice.com/en_us/article/xwnva7/snapchat-
employees-abused-data-access-spy-on-users-snaplion

[44] Cultured Code GmbH & Co. KG. [n.d.]. Things. https://culturedcode.
com/things/

[45] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional
reactive programming for GUIs. In 34th Annual SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 411–
422. https://doi.org/10.1145/2491956.2462161

[46] Dat Project. [n.d.]. dat:// – a peer-to-peer protocol. https://datproject.
org

[47] Matt Day, Giles Turner, and Natalia Drozdiak. 2019. Ama-
zon Workers Are Listening to What You Tell Alexa.
https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-
listening-to-you-on-alexa-a-global-team-reviews-audio

[48] Drew DeVault. 2018. The advantages of an email-driven git workflow.
https://drewdevault.com/2018/07/02/Email-driven-git.html

[49] Dropbox, Inc. [n.d.]. DBX Platform. https://www.dropbox.com/
developers

[50] Dropbox, Inc. [n.d.]. Dropbox. https://www.dropbox.com/
[51] Dropbox, Inc. [n.d.]. How can I access my files offline? https:

//help.dropbox.com/mobile/access-files-offline
[52] Dropbox, Inc. [n.d.]. What’s a conflicted copy? https://help.dropbox.

com/syncing-uploads/conflicted-copy
[53] Facebook, Inc. [n.d.]. React. https://reactjs.org
[54] Facebook, Inc. 2017. OpenR documentation: KvStore – Store and

Sync. https://github.com/facebook/openr/blob/master/openr/docs/
KvStore.md

[55] Alex Feyerke. 2013. Say hello to Offline First. http://hood.ie/blog/say-
hello-to-offline-first.html

[56] Figma, Inc. [n.d.]. Figma. https://www.figma.com
[57] Brian Fung. 2017. A mysterious message is locking Google Docs

users out of their files. https://www.washingtonpost.com/news/the-
switch/wp/2017/10/31/a-mysterious-message-is-locking-google-
docs-users-out-of-their-files/

[58] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and
Michael Rushanan. 2016. Dancing on the Lip of the Volcano: Cho-
sen Ciphertext Attacks on Apple iMessage. In 25th USENIX Security
Symposium. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/garman

[59] Matt Gaunt. 2019. Service Workers: an Introduction.
https://developers.google.com/web/fundamentals/primers/service-
workers/

[60] Pallab Ghosh. 2015. Google’s Vint Cerf warns of ’digital Dark Age’.
https://www.bbc.co.uk/news/science-environment-31450389

[61] GitHub, Inc. [n.d.]. About pull requests. https://help.github.com/en/
articles/about-pull-requests

[62] Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and
Alastair R Beresford. 2017. Verifying strong eventual consistency
in distributed systems. Proceedings of the ACM on Programming
Languages (PACMPL) 1, OOPSLA (Oct. 2017). https://doi.org/10.1145/
3133933

https://github.com/automerge/hypermerge
https://www.inkandswitch.com
https://miro.com
https://parseplatform.org
https://pouchdb.com
https://sqlite.org/
https://webrtc.org
https://redux.js.org/basics/reducers
https://redux.js.org/basics/reducers
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
http://guide.couchdb.org/
https://couchdb.apache.org
https://couchdb.apache.org
https://developer.apple.com/icloud/cloudkit/
https://developer.apple.com/icloud/cloudkit/
https://developer.apple.com/documentation/coredata
https://developer.apple.com/documentation/coredata
https://developer.apple.com/documentation/webkit
https://developer.apple.com/documentation/webkit
https://www.theguardian.com/info/developer-blog/2015/nov/04/building-an-offline-page-for-theguardiancom
https://www.theguardian.com/info/developer-blog/2015/nov/04/building-an-offline-page-for-theguardiancom
https://trello.com/
https://help.trello.com/article/747-exporting-data-from-trello-1
https://help.trello.com/article/747-exporting-data-from-trello-1
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1145/2933057.2933090
http://archagon.net/blog/2018/03/24/data-laced-with-history/
http://archagon.net/blog/2018/03/24/data-laced-with-history/
http://arxiv.org/pdf/1302.0309.pdf
http://lp.redislabs.com/rs/915-NFD-128/images/WP-RedisLabs-Redis-Conflict-free-Replicated-Data-Types.pdf
http://lp.redislabs.com/rs/915-NFD-128/images/WP-RedisLabs-Redis-Conflict-free-Replicated-Data-Types.pdf
http://lp.redislabs.com/rs/915-NFD-128/images/WP-RedisLabs-Redis-Conflict-free-Replicated-Data-Types.pdf
https://beakerbrowser.com/
https://hashbase.io/
https://workingcopyapp.com
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://www.infoq.com/presentations/weave-mesh
https://www.infoq.com/presentations/weave-mesh
https://www.box.com/
https://github.blog/2014-02-14-rendered-prose-diffs/
https://github.blog/2014-02-14-rendered-prose-diffs/
https://github.com/mafintosh/hypercore
https://github.com/mafintosh/hypercore
https://willowtreeapps.com/ideas/parse-shutdown-what-it-means-and-what-you-can-do
https://willowtreeapps.com/ideas/parse-shutdown-what-it-means-and-what-you-can-do
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://support.goodnotes.com/hc/en-us/articles/202168425-How-should-I-backup-my-documents-
https://support.goodnotes.com/hc/en-us/articles/202168425-How-should-I-backup-my-documents-
https://www.youtube.com/watch?v=Dox3XAoTCyg
https://www.youtube.com/watch?v=Dox3XAoTCyg
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://www.echr.coe.int/Documents/Guide_Art_9_ENG.pdf
https://www.echr.coe.int/Documents/Guide_Art_9_ENG.pdf
https://medium.com/offline-camp/couchdb-pouchdb-and-hoodie-as-a-stack-for-progressive-web-apps-a6078a985f18
https://medium.com/offline-camp/couchdb-pouchdb-and-hoodie-as-a-stack-for-progressive-web-apps-a6078a985f18
https://medium.com/offline-camp/couchdb-pouchdb-and-hoodie-as-a-stack-for-progressive-web-apps-a6078a985f18
https://www.vice.com/en_us/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://www.vice.com/en_us/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://culturedcode.com/things/
https://culturedcode.com/things/
https://doi.org/10.1145/2491956.2462161
https://datproject.org
https://datproject.org
https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-listening-to-you-on-alexa-a-global-team-reviews-audio
https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-listening-to-you-on-alexa-a-global-team-reviews-audio
https://drewdevault.com/2018/07/02/Email-driven-git.html
https://www.dropbox.com/developers
https://www.dropbox.com/developers
https://www.dropbox.com/
https://help.dropbox.com/mobile/access-files-offline
https://help.dropbox.com/mobile/access-files-offline
https://help.dropbox.com/syncing-uploads/conflicted-copy
https://help.dropbox.com/syncing-uploads/conflicted-copy
https://reactjs.org
https://github.com/facebook/openr/blob/master/openr/docs/KvStore.md
https://github.com/facebook/openr/blob/master/openr/docs/KvStore.md
http://hood.ie/blog/say-hello-to-offline-first.html
http://hood.ie/blog/say-hello-to-offline-first.html
https://www.figma.com
https://www.washingtonpost.com/news/the-switch/wp/2017/10/31/a-mysterious-message-is-locking-google-docs-users-out-of-their-files/
https://www.washingtonpost.com/news/the-switch/wp/2017/10/31/a-mysterious-message-is-locking-google-docs-users-out-of-their-files/
https://www.washingtonpost.com/news/the-switch/wp/2017/10/31/a-mysterious-message-is-locking-google-docs-users-out-of-their-files/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://www.bbc.co.uk/news/science-environment-31450389
https://help.github.com/en/articles/about-pull-requests
https://help.github.com/en/articles/about-pull-requests
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933

Onward! ’19, October 23–24, 2019, Athens, Greece Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan

[63] Google. [n.d.]. Colaboratory. https://colab.research.google.com
[64] Google. [n.d.]. Firebase. https://firebase.google.com
[65] Google. [n.d.]. Firebase Documentation: Enable offline data. https:

//firebase.google.com/docs/firestore/manage-data/enable-offline
[66] Google. [n.d.]. Google Docs Offline. https:

//chrome.google.com/webstore/detail/google-docs-offline/
ghbmnnjooekpmoecnnnilnnbdlolhkhi

[67] Google. [n.d.]. Progressive Web Apps. https://developers.google.
com/web/progressive-web-apps/

[68] Google. [n.d.]. See what’s changed in a file. https://support.google.
com/docs/answer/190843

[69] Google. [n.d.]. Suggest edits in Google Docs. https://support.google.
com/docs/answer/6033474

[70] Google. [n.d.]. Takeout: Download your data. https://takeout.google.
com/

[71] Google LLC. [n.d.]. Google Drive. https://www.google.com/drive/
[72] Google LLC. 2019. Google Drive Terms of Service. https://www.

google.com/drive/terms-of-service/
[73] Phil Gyford. [n.d.]. Our Incredible Journey. https://

ourincrediblejourney.tumblr.com/
[74] IBM. [n.d.]. Cloudant. https://www.ibm.com/cloud/cloudant
[75] Ink & Switch. [n.d.]. PixelPusher. https://github.com/automerge/

pixelpusher
[76] Ink & Switch. [n.d.]. PixelPusher releases. https://github.com/

automerge/pixelpusher/releases
[77] Ink & Switch. [n.d.]. PushPin. https://inkandswitch.github.io/

pushpin/
[78] Ink & Switch. [n.d.]. PushPin releases. https://github.com/

inkandswitch/pushpin/releases
[79] Ink & Switch. [n.d.]. Trellis. https://github.com/automerge/trellis#

readme
[80] Ink & Switch. [n.d.]. Trellis releases. https://github.com/automerge/

trellis/releases
[81] Ink & Switch. 2018. Capstone, a tablet for thinking. https://www.

inkandswitch.com/capstone-manuscript.html
[82] Internet Archive. [n.d.]. Decentralized Web Summit. https://www.

decentralizedweb.net
[83] Internet Archive. [n.d.]. Software Library. https://archive.org/details/

softwarelibrary
[84] Rowan James. [n.d.]. GitX-dev. https://rowanj.github.io/gitx/
[85] JMichaelTX. 2015. How do I resolve Sync Conflicts?

https://discussion.evernote.com/topic/86113-how-do-i-resolve-
sync-conflicts/

[86] Meggin Kearney and Jonathan Garbee. 2019. Optimize Performance
Under Varying Network Conditions. https://developers.google.com/
web/tools/chrome-devtools/network/network-conditions

[87] Keybase, Inc. [n.d.]. Keybase. https://keybase.io
[88] Paul Kinlan. 2019. Adding a ServiceWorker and Offline into yourWeb

App. https://developers.google.com/web/fundamentals/codelabs/
offline/

[89] Martin Kleppmann. 2018. CRDTs and the Quest for Distributed
Consistency. In QCon London. https://www.infoq.com/presentations/
crdt-distributed-consistency

[90] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-
Free Replicated JSON Datatype. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 28, 10 (April 2017), 2733–2746. https:
//doi.org/10.1109/TPDS.2017.2697382

[91] Dan Luu. 2017. Computer latency: 1977–2017. https://danluu.com/
input-lag/

[92] Igor Mandrigin. 2016. Optimistic UIs in under 1000 words. https:
//uxplanet.org/optimistic-1000-34d9eefe4c05

[93] Mattt. 2018. Network Link Conditioner. https://nshipster.com/
network-link-conditioner/

[94] Cameron McEfee. 2011. Behold: Image view modes. https://github.
blog/2011-03-21-behold-image-view-modes/

[95] Mark McGranaghan. 2018. Slow Software. https://www.
inkandswitch.com/slow-software.html

[96] Christopher Meiklejohn. 2019. Applied Monotonicity: A Brief History
of CRDTs in Riak. http://christophermeiklejohn.com/erlang/lasp/
2019/03/08/monotonicity.html

[97] Meteor Development Group Inc. [n.d.]. Meteor. https://www.meteor.
com

[98] Microsoft. [n.d.]. OneDrive. https://onedrive.live.com/
[99] Milanote Pty Ltd. [n.d.]. Milanote. https://www.milanote.com
[100] Mozilla Developer Network. [n.d.]. The WebSocket API (Web-

Sockets). https://developer.mozilla.org/en-US/docs/Web/API/
WebSockets_API

[101] Mozilla Developer Network. [n.d.]. Using the application
cache. https://developer.mozilla.org/en-US/docs/Web/HTML/Using_
the_application_cache

[102] Mozilla Developer Network. [n.d.]. Window.localStorage. https://
developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

[103] Neoreason, Inc. [n.d.]. Repl.it. https://repl.it
[104] Long Tien Nguyen and Alan Kay. 2015. The Cuneiform Tablets of

2015. In ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!). 297–307.
https://doi.org/10.1145/2814228.2814250

[105] Roisin O’Connor. 2019. Myspace loses ‘over 50 million songs’
from website after server migration project goes wrong.
https://www.independent.co.uk/arts-entertainment/music/news/
myspace-songs-lost-website-move-migration-mp3-music-server-
accounts-a8827881.html

[106] Cody Ogden. 2019. Killed by Google. https://killedbygoogle.com
[107] Overcast Radio, LLC. [n.d.]. Overcast. https://overcast.fm
[108] Protocol Labs Inc. [n.d.]. IPFS. https://ipfs.io
[109] Anupam Rastogi. 2018. Are Distributed Teams the new Cloud for

startups? https://medium.com/@anupamr/distributed-teams-are-
the-new-cloud-for-startups-14240a9822d7

[110] J Rosenberg, RMahy, PMatthews, and DWing. 2008. Session Traversal
Utilities for NAT (STUN). Technical Report RFC5389. IETF Network
Working Group. https://tools.ietf.org/html/rfc3489

[111] Alyssa Rosenzweig. 2019. The Federation Fallacy. https://rosenzweig.
io/blog/the-federation-fallacy.html

[112] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Technical Report 7506. INRIA. http://hal.inria.fr/
inria-00555588/

[113] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In 13th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS). 386–400. https://doi.org/10.1007/978-3-642-24550-3_29

[114] Shiny Frog. [n.d.]. Bear. https://bear.app
[115] Dharma Shukla. 2018. Azure Cosmos DB: Pushing the frontier of

globally distributed databases. https://azure.microsoft.com/en-
us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-
distributed-databases/

[116] Signal Messenger. [n.d.]. Technical Information. https://www.signal.
org/docs/

[117] Mike Skalnik. 2013. 3D File Diffs. https://github.blog/2013-09-17-
3d-file-diffs/

[118] Nate Smith and Joseph Gentle. [n.d.]. ShareDB. https://github.com/
share/sharedb

[119] SourceGear, LLC. [n.d.]. DiffMerge. https://www.sourcegear.com/
diffmerge/

[120] SQLite. 2018. LoC Recommended Storage Format. https://www.
sqlite.org/locrsf.html

https://colab.research.google.com
https://firebase.google.com
https://firebase.google.com/docs/firestore/manage-data/enable-offline
https://firebase.google.com/docs/firestore/manage-data/enable-offline
https://chrome.google.com/webstore/detail/google-docs-offline/ghbmnnjooekpmoecnnnilnnbdlolhkhi
https://chrome.google.com/webstore/detail/google-docs-offline/ghbmnnjooekpmoecnnnilnnbdlolhkhi
https://chrome.google.com/webstore/detail/google-docs-offline/ghbmnnjooekpmoecnnnilnnbdlolhkhi
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://support.google.com/docs/answer/190843
https://support.google.com/docs/answer/190843
https://support.google.com/docs/answer/6033474
https://support.google.com/docs/answer/6033474
https://takeout.google.com/
https://takeout.google.com/
https://www.google.com/drive/
https://www.google.com/drive/terms-of-service/
https://www.google.com/drive/terms-of-service/
https://ourincrediblejourney.tumblr.com/
https://ourincrediblejourney.tumblr.com/
https://www.ibm.com/cloud/cloudant
https://github.com/automerge/pixelpusher
https://github.com/automerge/pixelpusher
https://github.com/automerge/pixelpusher/releases
https://github.com/automerge/pixelpusher/releases
https://inkandswitch.github.io/pushpin/
https://inkandswitch.github.io/pushpin/
https://github.com/inkandswitch/pushpin/releases
https://github.com/inkandswitch/pushpin/releases
https://github.com/automerge/trellis#readme
https://github.com/automerge/trellis#readme
https://github.com/automerge/trellis/releases
https://github.com/automerge/trellis/releases
https://www.inkandswitch.com/capstone-manuscript.html
https://www.inkandswitch.com/capstone-manuscript.html
https://www.decentralizedweb.net
https://www.decentralizedweb.net
https://archive.org/details/softwarelibrary
https://archive.org/details/softwarelibrary
https://rowanj.github.io/gitx/
https://discussion.evernote.com/topic/86113-how-do-i-resolve-sync-conflicts/
https://discussion.evernote.com/topic/86113-how-do-i-resolve-sync-conflicts/
https://developers.google.com/web/tools/chrome-devtools/network/network-conditions
https://developers.google.com/web/tools/chrome-devtools/network/network-conditions
https://keybase.io
https://developers.google.com/web/fundamentals/codelabs/offline/
https://developers.google.com/web/fundamentals/codelabs/offline/
https://www.infoq.com/presentations/crdt-distributed-consistency
https://www.infoq.com/presentations/crdt-distributed-consistency
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://danluu.com/input-lag/
https://danluu.com/input-lag/
https://uxplanet.org/optimistic-1000-34d9eefe4c05
https://uxplanet.org/optimistic-1000-34d9eefe4c05
https://nshipster.com/network-link-conditioner/
https://nshipster.com/network-link-conditioner/
https://github.blog/2011-03-21-behold-image-view-modes/
https://github.blog/2011-03-21-behold-image-view-modes/
https://www.inkandswitch.com/slow-software.html
https://www.inkandswitch.com/slow-software.html
http://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html
http://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html
https://www.meteor.com
https://www.meteor.com
https://onedrive.live.com/
https://www.milanote.com
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://repl.it
https://doi.org/10.1145/2814228.2814250
https://www.independent.co.uk/arts-entertainment/music/news/myspace-songs-lost-website-move-migration-mp3-music-server-accounts-a8827881.html
https://www.independent.co.uk/arts-entertainment/music/news/myspace-songs-lost-website-move-migration-mp3-music-server-accounts-a8827881.html
https://www.independent.co.uk/arts-entertainment/music/news/myspace-songs-lost-website-move-migration-mp3-music-server-accounts-a8827881.html
https://killedbygoogle.com
https://overcast.fm
https://ipfs.io
https://medium.com/@anupamr/distributed-teams-are-the-new-cloud-for-startups-14240a9822d7
https://medium.com/@anupamr/distributed-teams-are-the-new-cloud-for-startups-14240a9822d7
https://tools.ietf.org/html/rfc3489
https://rosenzweig.io/blog/the-federation-fallacy.html
https://rosenzweig.io/blog/the-federation-fallacy.html
http://hal.inria.fr/inria-00555588/
http://hal.inria.fr/inria-00555588/
https://doi.org/10.1007/978-3-642-24550-3_29
https://bear.app
https://azure.microsoft.com/en-us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://azure.microsoft.com/en-us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://azure.microsoft.com/en-us/blog/azure-cosmos-db-pushing-the-frontier-of-globally-distributed-databases/
https://www.signal.org/docs/
https://www.signal.org/docs/
https://github.blog/2013-09-17-3d-file-diffs/
https://github.blog/2013-09-17-3d-file-diffs/
https://github.com/share/sharedb
https://github.com/share/sharedb
https://www.sourcegear.com/diffmerge/
https://www.sourcegear.com/diffmerge/
https://www.sqlite.org/locrsf.html
https://www.sqlite.org/locrsf.html

Local-First Software: You Own Your Data, in spite of the Cloud Onward! ’19, October 23–24, 2019, Athens, Greece

[121] Stack Overflow. [n.d.]. When is localStorage cleared? https:
//stackoverflow.com/questions/8537112/when-is-localstorage-
cleared

[122] Chengzheng Sun andClarence Ellis. 1998. Operational transformation
in real-time group editors: Issues, algorithms, and achievements. In
ACM Conference on Computer Supported Cooperative Work (CSCW).
59–68. https://doi.org/10.1145/289444.289469

[123] Tarsnap Backup Inc. [n.d.]. Tarsnap cryptography. https://www.
tarsnap.com/crypto.html

[124] Tightdb, Inc. [n.d.]. Getting a Realm Object Server In-
stance. https://docs.realm.io/sync/getting-started-1/getting-a-
realm-object-server-instance

[125] Tightdb, Inc. [n.d.]. Realm. https://realm.io
[126] Tightdb, Inc. [n.d.]. What is Realm Platform? https://docs.realm.io/

sync/what-is-realm-platform
[127] Ulysses GmbH & Co. KG. [n.d.]. Ulysses. https://ulysses.app
[128] UN Special Rapporteur on the promotion and protection of the

right to freedom of opinion and expression. 2015. Submission
to the Joint Committee of the draft Investigatory Powers Bill.
http://data.parliament.uk/writtenevidence/committeeevidence.

svc/evidencedocument/draft-investigatory-powers-bill-
committee/draft-investigatory-powers-bill/written/26353.pdf

[129] Javier Valencia. [n.d.]. Pixel Art to CSS. https://www.pixelartcss.com
[130] Peter van Hardenberg. 2018. Pixelpusher: Real-time peer-to-peer

collaboration with React. https://medium.com/@pvh/pixelpusher-
real-time-peer-to-peer-collaboration-with-react-7c7bc8ecbf74

[131] Jonathan Vanian. 2017. Microsoft Office 365 Just Hit a Big Milestone.
http://fortune.com/2017/07/20/microsoft-office-365-earnings/

[132] Chris Watterston. 2016. My ‘There Is No Cloud’ Sticker. http:
//www.chriswatterston.com/blog/my-there-is-no-cloud-sticker

[133] WhatsApp Inc. 2017. WhatsApp Encryption Overview. https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[134] Adam Wiggins. 2018. Decentralized, offline-first, realtime collab-
oration with Automerge. https://www.youtube.com/watch?v=
L9fdyDlhByM

[135] Adam Wiggins. 2018. The iPad as a fast, precise tool for creativ-
ity. https://medium.com/@hirodusk/the-ipad-as-a-fast-precise-
tool-for-creativity-21384ea18659

[136] Wikipedia. [n.d.]. List of data breaches. https://en.wikipedia.org/
wiki/List_of_data_breaches

https://stackoverflow.com/questions/8537112/when-is-localstorage-cleared
https://stackoverflow.com/questions/8537112/when-is-localstorage-cleared
https://stackoverflow.com/questions/8537112/when-is-localstorage-cleared
https://doi.org/10.1145/289444.289469
https://www.tarsnap.com/crypto.html
https://www.tarsnap.com/crypto.html
https://docs.realm.io/sync/getting-started-1/getting-a-realm-object-server-instance
https://docs.realm.io/sync/getting-started-1/getting-a-realm-object-server-instance
https://realm.io
https://docs.realm.io/sync/what-is-realm-platform
https://docs.realm.io/sync/what-is-realm-platform
https://ulysses.app
http://data.parliament.uk/writtenevidence/committeeevidence.svc/evidencedocument/draft-investigatory-powers-bill-committee/draft-investigatory-powers-bill/written/26353.pdf
http://data.parliament.uk/writtenevidence/committeeevidence.svc/evidencedocument/draft-investigatory-powers-bill-committee/draft-investigatory-powers-bill/written/26353.pdf
http://data.parliament.uk/writtenevidence/committeeevidence.svc/evidencedocument/draft-investigatory-powers-bill-committee/draft-investigatory-powers-bill/written/26353.pdf
https://www.pixelartcss.com
https://medium.com/@pvh/pixelpusher-real-time-peer-to-peer-collaboration-with-react-7c7bc8ecbf74
https://medium.com/@pvh/pixelpusher-real-time-peer-to-peer-collaboration-with-react-7c7bc8ecbf74
http://fortune.com/2017/07/20/microsoft-office-365-earnings/
http://www.chriswatterston.com/blog/my-there-is-no-cloud-sticker
http://www.chriswatterston.com/blog/my-there-is-no-cloud-sticker
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.youtube.com/watch?v=L9fdyDlhByM
https://www.youtube.com/watch?v=L9fdyDlhByM
https://medium.com/@hirodusk/the-ipad-as-a-fast-precise-tool-for-creativity-21384ea18659
https://medium.com/@hirodusk/the-ipad-as-a-fast-precise-tool-for-creativity-21384ea18659
https://en.wikipedia.org/wiki/List_of_data_breaches
https://en.wikipedia.org/wiki/List_of_data_breaches

	Abstract
	1 Motivation: Collaboration and Ownership
	2 Seven Ideals for Local-first Software
	2.1 No Spinners: Your Work at Your Fingertips
	2.2 Your Work Is Not Trapped on One Device
	2.3 The Network Is Optional
	2.4 Seamless Collaboration with Your Colleagues
	2.5 The Long Now
	2.6 Security and Privacy by Default
	2.7 You Retain Ultimate Ownership and Control

	3 Existing Data Storage and Sharing Models
	3.1 How Application Architecture Affects User Experience
	3.2 Developer Infrastructure for Building Apps

	4 Towards a Better Future
	4.1 CRDTs as a Foundational Technology
	4.2 Ink & Switch Prototypes
	4.3 How You Can Help

	5 Conclusions
	Acknowledgments
	References

